Votre recherche
Résultats 98 ressources
-
Rapid urban expansion has significantly altered land use patterns, resulting in a decrease in pervious surface areas and a disruption of hydrologic connectivity between surface water and groundwater systems. Combined with inadequate drainage systems and poorly managed runoff, these changes have intensified urban flooding, leading to fatalities and significant infrastructure damage in many rapidly growing and climate-vulnerable urban areas around the world. This study presents an integrated economic-hydrologic model to assess the effectiveness of Low Impact Development (LID) measures—specifically permeable pavement, infiltration trenches, bio-retention cells, and rain barrels—in mitigating flood damage in the Bronx river watershed, NYC. The Storm Water Management Model (SWMM) was employed to simulate flood events and assess the effectiveness of various LIDs, applied individually and in combination, in reducing peak discharge. Flood inundation maps generated using HEC-GeoRAS were integrated with the HAZUS damage estimation model to quantify potential flood damages. A benefit-to-cost (BC) ratio was then calculated by comparing the monetary savings from reduced flood damage against the implementation costs of LID measures. Results indicate that the combined LID scenario offers the highest peak flow reduction, with permeable pavement alone reducing flow by 57%, outperforming other techniques under equal area coverage. Among all individual options, permeable pavement yields the highest cumulative BC ratio under all scenarios (4.6), whereas rain barrels are the least effective (2.6). The proposed evaluation framework highlights the importance of economic efficiency in flood mitigation planning and provides a structured foundation for informed decision-making to enhance urban resilience through LID implementation. © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025.
-
Global warming has intensified the hydrological cycle, resulting in more frequent extreme precipitation events and altered spatiotemporal precipitation patterns in urban areas, thereby increasing the risk of urban flooding and threatening socio-economic and ecological security. This study investigates the characteristics of summer extreme precipitation in the Poyang Lake City Group (PLCG) from 1971 to 2022, utilizing the China Daily Precipitation Dataset and NCEP/NCAR reanalysis data. Nine extreme precipitation indices were examined through linear trend analysis, Mann–Kendall tests, wavelet transforms, and correlation methods to quantify trends, periodicity, and atmospheric drivers. The key findings include: (1) All indices exhibited increasing trends, with RX1Day and R95p exhibiting significant rises (p < 0.05). PRCPTOT, R20, and SDII also increased, indicating heightened precipitation intensity and frequency. (2) R50, RX1Day, and SDII demonstrated east-high-to-west-low spatial gradients, whereas PRCPTOT and R20 peaked in the eastern and western PLCG. More than over 88% of stations recorded rising trends in PRCPTOT and R95p. (3) Abrupt changes occurred during 1993–2009 for PRCPTOT, R50, and SDII. Wavelet analysis revealed dominant periodicities of 26–39 years, linked to atmospheric oscillations. (4) Strong subtropical highs, moisture convergence, and negative OLR anomalies were closely associated with extreme precipitation. Warmer SSTs in the eastern equatorial Pacific amplified precipitation in preceding seasons. This study provides a scientific basis for flood prevention and climate adaptation in the PLCG and highlighting the region’s vulnerability to monsoonal shifts under global warming. © 2025 by the authors.
-
Flooding is an escalating hazard in arid and rapidly urbanizing environments such as Jeddah, Saudi Arabia, where the lack of historical flood records and sparse monitoring systems challenge effective risk prediction. To address this gap, this study aims to develop an accurate and interpretable flood susceptibility-mapping framework tailored to data-scarce urban settings. The research integrates a stacked ensemble model—comprising machine learning: XGBoost, CatBoost, and Histogram-based Gradient Boosting (HGB)—with SHapley Additive exPlanations (SHAP) to enhance prediction accuracy and model transparency. Random Forest was excluded from the final model stack due to inferior classification performance. A diverse set of geospatial inputs, including digital elevation model, slope, flow direction, Curve Number, topographic indices, and LULC (from ESRI Sentinel-2) were used as predictors. Furthermore, 92 and 198 flooded and non-flooded points were used for model validation. The model achieved strong predictive performance (AUC = 0.92, Accuracy = 0.82) on the validation set. In the absence of official flood records, model outputs were intersected with road network data to identify 395 road points in highly susceptible zones. Although these points do not represent a formal validation dataset—due to the general lack of detailed flood event records in the region, particularly in relation to infrastructure—they provide a valuable proxy for identifying flood-prone road segments. SHAP explainability analysis revealed that TRI, TPI, and distance to rivers were the most globally influential features, while Curve Number and LULC were key drivers of high-risk predictions. The model mapped 139 km2 (8.7 %) of the area as very high flood susceptibility and 325 km2 (20.3 %) as high susceptibility, outperforming individual learners. These results confirm that stacked ensemble learning, paired with explainable AI and creative validation strategies, can produce reliable flood susceptibility maps even in data-constrained contexts. This framework offers a transferable and scalable solution for flood risk assessment in similar arid and urbanizing environments. © 2025 Elsevier Ltd
-
The increasing threats of global flood risk mandate rapid and accurate high-resolution flood modeling strategies over large scales. In the United States, the National Oceanic and Atmospheric Administration (NOAA) Office of Water Prediction (OWP) has operationalised a Flood Inundation Mapping (FIM) framework utilising the Height Above Nearest Drainage (HAND)-Synthetic Rating Curve (SRC) approach. It translates streamflow into stage and subsequently maps the inundation over the floodplain. It is a low-fidelity FIM framework, suitable for large-scale applications with much less computational effort. The SRCs are calculated for each river segment using Manning's equation; however, uncertainty in Manning's parameters and missing bathymetry impart bias in SRC calculation, and thus in FIM. An SRC adjustment factor (λsrc), introduced by OWP, calibrates SRCs against USGS rating curves, HEC-RAS 1D rating curves, and National Weather Service (NWS)-Categorical Flood Inundation Mapping (CatFIM) locations. Adjusted SRCs improve the FIM predictions but are limited to locations with the above data sources. In this paper, we develop machine learning models to predict the λsrc over the entire United States river network. Results show that the eXtreme Gradient Boosting model yielded the strongest predictability, with an R2 of 0.70. The impact of λsrc on FIM predictions is evaluated for Hurricane Matthew in North Carolina and synthetic flood events in 15 watersheds. For Hurricane Matthew flooding, the mean percentage improvements in Critical Success Index (CSI), Probability of Detection (POD), and F1 Score are 17.5%, 20% and 12.5%, while for synthetic events, the improvements are 2.59%, 4.93%, and 3.03%, respectively. © 2025 The Author(s)
-
Floods constitute the most significant natural hazard to societies worldwide. Population growth and unchecked development have led to floodplain encroachment. Modelling suggests that climate change will regionally intensify the threat posed by future floods, with more people in harm's way. From a global change perspective, past flood events and their spatial-temporal patterns are of particular interest because they can be linked to former climate patterns, which can be used to guide future climate predictions. Millennial and centennial time series contain evidence of very rare extreme events, which are often considered by society as ‘unprecedented’. By understanding their timing, magnitude and frequency in conjunction with prevailing climate regime, we can better forecast their future occurrence. This Virtual Special Issue (VSI) entitled Temporal and spatial patterns in Holocene floods under the influence of past global change, and their implications for forecasting “unpredecented” future events comprises 14 papers that focus on how centennial and millennia-scale natural and documentary flood archives help improve future flood science. Specifically, documentation of large and very rare flood episodes challenges society's lack of imagination regarding the scale of flood disasters that are possible (what we term here, the “unknown unknowns”). Temporal and spatial flood behaviour and related climate patterns as well as the reconstruction of flood propagation in river systems are important foci of this VSI. These reconstructions are crucial for the provision of robust and reliable data sets, knowledge and baseline information for future flood scenarios and forecasting. We argue that it remains difficult to establish analogies for understanding flood risk during the current period of global warming. Most studies in this VSI suggest that the most severe flooding occurred during relatively cool climate periods, such as the Little Ice Age. However, flood patterns have been significantly altered by land use and river management in many catchments and floodplains over the last two centuries, thereby obscuring the climate signal. When the largest floods in instrumental records are compared with paleoflood records reconstructed from natural and documentary archives, it becomes clear that precedent floods should have been considered in many cases of flood frequency analysis and flood risk modelling in hydraulic infrastructure. Finally, numerical geomorphological analysis and hydrological simulations show great potential for testing and improving our understanding of the processes and factors involved in the temporal and spatial behaviour of floods. © 2025 The Authors
-
Artificial flooding of rainwater is most common in urban areas due to various reasons, such as improper drainage systems, obstruction of natural drainage by building constructions, and encroachment of stormwater nallahs. Flash floods lead to significant losses, disrupt transportation, and cause inconvenience to the public. Udupi, characterized by its porous lateritic strata, undulating topography, and proximity to the sea, experiences artificial flooding during the peak monsoon season in its low-lying areas, primarily due to the overflow of the Indrani River, which is also a potential water resource for Udupi, Karnataka. Currently, the river faces significant challenges due to increasing anthropogenic activities. Revitalizing the Indrani River offers numerous benefits, including its potential use as a drinking water source during periods of water scarcity. This study aims to propose flood and stormwater management measures for the river catchment and to evaluate selected water quality parameters (pH, dissolved oxygen, and conductivity) at fifteen strategic locations along the river course. Higher conductivity observed at downstream stations is attributed to sewage discharge from urban settlements and a sewage treatment plant. The study suggests short-term measures such as targeted clean-up operations and stricter enforcement of pollution control regulations. Additionally, it recommends long-term strategies, including the development of a comprehensive river basin management plan, community engagement initiatives, and improvements to wastewater treatment infrastructure. To maintain the health of the Indrani River, this research emphasizes the importance of continuous monitoring and the implementation of integrated management practices. © The Author(s) 2025.
-
This study introduces a novel methodology for assessing ice-jam flood hazards along river channels. It employs empirical equations that relate non-dimensional ice-jam stage to discharge, enabling the generation of an ensemble of longitudinal profiles of ice-jam backwater levels through Monte-Carlo simulations. These simulations produce non-exceedance probability profiles, which indicate the likelihood of various flood levels occurring due to ice jams. The flood levels associated with specific return periods were validated using historical gauge records. The empirical equations require input parameters such as channel width, slope, and thalweg elevation, which were obtained from bathymetric surveys. This approach is applied to assess ice-jam flood hazards by extrapolating data from a gauged reach at Fort Simpson to an ungauged reach at Jean Marie River along the Mackenzie River in Canada’s Northwest Territories. The analysis further suggests that climate change is likely to increase the severity of ice-jam flood hazards in both reaches by the end of the century. This methodology is applicable to other cold-region rivers in Canada and northern Europe, provided similar fluvial geomorphological and hydro-meteorological data are available, making it a valuable tool for ice-jam flood risk assessment in other ungauged areas. © 2025 by the authors.
-
Les événements météorologiques extrêmes (EME) et les désastres qu’ils entrainent provoquent des conséquences psychosociales qui sont modulées en fonction de différents facteurs sociaux. On constate aussi que les récits médiatiques et culturels qui circulent au sujet des EME ne sont pas représentatifs de l’ensemble des expériences de personnes sinistrées : celles qui en subissent les conséquences les plus sévères tendent aussi à être celles qu’on « entend » le moins dans l’espace public. Ces personnes sont ainsi susceptibles de vivre de l’injustice épistémique, ce qui a des effets délétères sur le soutien qu’elles reçoivent. Face à ces constats s’impose la nécessité de mieux comprendre la diversité des expériences d’EME et d’explorer des stratégies pour soutenir l’ensemble des personnes sinistrées dans leur rétablissement psychosocial. Cet article soutient que la recherche narrative peut contribuer à répondre à ces objectifs. En dépeignant des réalités multiples, la recherche narrative centrée sur les récits de personnes sinistrées présente aussi un intérêt significatif pour l’amélioration des pratiques d’intervention en contexte de désastre. , Extreme weather events (EWE) and their resulting disasters cause psychosocial consequences that are moderated by different social factors. Media and cultural accounts of EWEs do not represent the full range of disaster survivor experiences, that is, those who experienced the most severe consequences also tend to be those least “heard” in the public arena. These people are therefore most likely to experience forms of epistemic injustice that negatively impact the support offered to cope with disaster. Considering these findings, there is a need to better understand the diversity of EWE experiences and explore strategies for supporting all disaster survivors in their psychosocial recovery. This article argues that narrative research can help meet these needs. By portraying the multiple realities of people affected by EWEs, narrative research focusing on the stories of disaster survivors is also of significant interest for improving intervention practices in this context.
-
AbstractThe frequency and severity of floods has increased in different regions of the world due to climate change. Although the impact of floods on human health has been extensively studied, the increase in the segments of the population that are likely to be impacted by floods in the future makes it necessary to examine how adaptation measures impact the mental health of individuals affected by these natural disasters. The goal of this scoping review is to document the existing studies on flood adaptation measures and their impact on the mental health of affected populations, in order to identify the best preventive strategies as well as limitations that deserve further exploration. This study employed the methodology of the PRISMA-ScR extension for scoping reviews to systematically search the databases Medline and Web of Science to identify studies that examined the impact of adaptation measures on the mental health of flood victims. The database queries resulted in a total of 857 records from both databases. Following two rounds of screening, 9 studies were included for full-text analysis. Most of the analyzed studies sought to identify the factors that drive resilience in flood victims, particularly in the context of social capital (6 studies), whereas the remaining studies analyzed the impact of external interventions on the mental health of flood victims, either from preventive or post-disaster measures (3 studies). There is a very limited number of studies that analyze the impact of adaptation measures on the mental health of populations and individuals affected by floods, which complicates the generalizability of their findings. There is a need for public health policies and guidelines for the development of flood adaptation measures that adequately consider a social component that can be used to support the mental health of flood victims.
-
<p><strong class="journal-contentHeaderColor">Abstract.</strong> Year-round river discharge estimation and forecasting is a critical component of sustainable water resource management. However, in cold climate regions such as Canada, this basic task gets intricated due to the challenge of river ice conditions. River ice conditions are dynamic and can change quickly in a short period of time. This dynamic nature makes river ice conditions difficult to forecast. Moreover, the observation of under-ice river discharge also remains a challenge since no reliable method for its estimation has been developed till date. It is therefore an active field of research and development. The integration of river ice hydraulic models in forecasting systems has remained relatively uncommon. The current study has two main objectives: first is to demonstrate the development and capabilities of a river ice forecasting system based on coupled hydrological and hydraulic modelling approach for the Chaudière River in Québec; and second is to assess its functionality over selected winter events. The forecasting system is developed within a well-known operational forecasting platform: the Delft Flood Early Warning System (Delft-FEWS). The current configuration of the systems integrates (i) meteorological products such as the Regional Ensemble Prediction System (REPS); (ii) a hydrological module implemented through the HydrOlOgical Prediction LAboratory (HOOPLA), a multi-model based hydrological modelling framework; and (iii) hydraulic module implemented through a 1D steady and unsteady HEC-RAS river ice models. The system produces ensemble forecasts for discharge and water level and provides flexibility to modify various dynamic parameters within the modelling chain such as discharge timeseries, ice thickness, ice roughness as well as carryout hindcasting experiments in a batch production way. Performance of the coupled modelling approach was assessed using “Perfect forecast” over winter events between 2020 and 2023 winter seasons. The root mean square error (RMSE) and percent bias (Pbias) metrics were calculated. The hydrologic module of the system showed significant deviations from the observations. These deviations could be explained by the inherent uncertainty in the under-ice discharge estimates as well as uncertainty in the modelling chain. The hydraulic module of the system performed better and the Pbias was within ±10 %.</p>
-
Combined sewer surcharges in densely urbanized areas have become more frequent due to the expansion of impervious surfaces and intensified precipitation caused by climate change. These surcharges can generate system overflows, causing urban flooding and pollution of urban areas. This paper presents a novel methodology to mitigate sewer system surcharges and control surface water. In this methodology, flow control devices and urban landscape retrofitting are proposed as strategies to reduce water inflow into the sewer network and manage excess water on the surface during extreme rainfall events. For this purpose, a 1D/2D dual drainage model was developed for two case studies located in Montreal, Canada. Applying the proposed methodology to these two sites led to a reduction of the volume of wastewater overflows by 100% and 86%, and a decrease in the number of surface overflows by 100% and 71%, respectively, at the two sites for a 100-year return period 3-h Chicago design rainfall. It also controlled the extent of flooding, reduced the volume of uncontrolled surface floods by 78% and 80% and decreased flooded areas by 68% and 42%, respectively, at the two sites for the same design rainfall.
-
A new method for sensitivity analysis of water depths is presented based on a two-dimensional hydraulic model as a convenient and cost-effective alternative to Monte Carlo simulations. The method involves perturbation of the probability distribution of input variables. A relative sensitivity index is calculated for each variable, using the Gauss quadrature sampling, thus limiting the number of runs of the hydraulic model. The variable-related highest variation of the expected water depths is considered to be the most influential. The proposed method proved particularly efficient, requiring less information to describe model inputs and fewer model executions to calculate the sensitivity index. It was tested over a 45 km long reach of the Richelieu River, Canada. A 2D hydraulic model was used to solve the shallow water equations (SWE). Three input variables were considered: Flow rate, Manning’s coefficient, and topography of a shoal within the considered reach. Four flow scenarios were simulated with discharge rates of 759, 824, 936, and 1113 m 3 / s . The results show that the predicted water depths were most sensitive to the topography of the shoal, whereas the sensitivity indices of Manning’s coefficient and the flow rate were comparatively lower. These results are important for making better hydraulic models, taking into account the sensitivity analysis.
-
In recent years, understanding and improving the perception of flood risk has become an important aspect of flood risk management and flood risk reduction policies. The aim of this study was to explore perceptions of flood risk in the Petite Nation River watershed, located in southern Quebec, Canada. A survey was conducted with 130 residents living on a floodplain in this river watershed, which had been affected by floods in the spring of 2017. Participants were asked about different aspects related to flood risk, such as the flood hazard experience, the physical changes occurring in the environment, climate change, information accessibility, flood risk governance, adaptation measures, and finally the perception of losses. An analysis of these factors provided perspectives for improving flood risk communication and increasing the public awareness of flood risk. The results indicated that the analyzed aspects are potentially important in terms of risk perception and showed that the flood risk perceptions varied for each aspect analyzed. In general, the information regarding flood risk management is available and generally understandable, and the level of confidence was good towards most authorities. However, the experiences of flood risk and the consequences of climate change on floods were not clear among the respondents. Regarding the adaptation measures, the majority of participants tended to consider non-structural adaptation measures as being more relevant than structural ones. Moreover, the long-term consequences of flooding on property values are of highest concern. These results provide a snapshot of citizens’ risk perceptions and their opinions on topics that are directly related to such risks.
-
In Canada, flooding is the most common and costly natural hazard. Flooding events significantly impact communities, damage infrastructures and threaten public security. Communication, as part of a flood risk management strategy, is an essential means of countering these threats. It is therefore important to develop new and innovative tools to communicate the flood risk with citizens. From this perspective, the use of story maps can be very effectively implemented for a broad audience, particularly to stakeholders. This paper details how an interactive web-based story map was set up to communicate current and future flood risks in the Petite-Nation River watershed, Quebec (Canada). This web technology application combines informative texts and interactive maps on current and future flood risks in the Petite-Nation River watershed. Flood risk and climate maps were generated using the GARI tool, implemented using a geographic information system (GIS) supported by ArcGIS Online (Esri). Three climate change scenarios developed by the Hydroclimatic Atlas of Southern Quebec were used to visualize potential future impacts. This study concluded that our story map is an efficient flood hazard communication tool. The assets of this interactive web mapping tool are numerous, namely user-friendly mapping, use and interaction, and customizable displays.
-
This paper presents a new framework for floodplain inundation modeling in an ungauged basin using unmanned aerial vehicles (UAVs) imagery. This method is based on the integrated analysis of high-resolution ortho-images and elevation data produced by the structure from motion (SfM) technology. To this end, the Flood-Level Marks (FLMs) were created from high-resolution UAV ortho-images and compared to the flood inundated areas simulated using the HEC-RAS hydraulic model. The flood quantiles for 25, 50, 100, and 200 return periods were then estimated by synthetic hydrographs using the Natural Resources Conservation Service (NRCS). The proposed method was applied to UAV image data collected from the Khosban village, in Taleghan County, Iran, in the ungauged sub-basin of the Khosban River. The study area is located along one kilometre of the river in the middle of the village. The results showed that the flood inundation areas modeled by the HEC-RAS were 33%, 19%, and 8% less than those estimated from the UAV’s FLMs for 25, 50, and 100 years return periods, respectively. For return periods of 200 years, this difference was overestimated by more than 6%, compared to the UAV’s FLM. The maximum flood depth in our four proposed scenarios of hydraulic models varied between 2.33 to 2.83 meters. These analyses showed that this method, based on the UAV imagery, is well suited to improve the hydraulic modeling for seasonal inundation in ungauged rivers, thus providing reliable support to flood mitigation strategies
-
Geohazards associated with the dynamics of the liquid and solid water of the Earth’s hydrosphere, such as floods and glacial processes, may pose significant risks to populations, activities and properties [...]
-
Floods can be caused by heavy rainfall and the consequent overflow of rivers, causing low-lying areas to be affected. Populated regions close to riverbeds are the sectors most affected by these disasters, which requires modelling studies to generate different scenarios. The work focuses on the bibliometric analysis of the search for topics such as flood modelling focused on the research, risk, and assessment of these catastrophes, aiming to determine new trends and tools for their application in the prevention of these natural disasters. The methodology consists of: (i) search criteria and database selection, (ii) pre-processing of the selected data and software, and (iii) analysis and interpretation of the results. The results show a wide range of studies for dimensional analysis in different flood scenarios, which greatly benefit the development of flood prevention and risk strategies. In addition, this work provides insight into the different types of software and modelling for flood analysis and simulation and the various trends and applications for future modelling.
-
Résumé L'hydrogéomorphologie étudie la dynamique des rivières en se concentrant sur les interactions liant la structure des écoulements, la mobilisation et le transport des sédiments et les morphologies qui caractérisent les cours d'eau et leur bassin‐versant. Elle offre un cadre d'analyse et des outils pour une meilleure intégration des connaissances sur la dynamique des rivières pour la gestion des cours d'eau au sens large, et plus spécifiquement, pour leur restauration, leur aménagement et pour l'évaluation et la prévention des risques liés aux aléas fluviaux. Au Québec, l'hydrogéomorphologie émerge comme contribution significative dans les approches de gestion et d'évaluation du risque et se trouve au cœur d'un changement de paradigme dans la gestion des cours d'eau par lequel la restauration des processus vise à augmenter la résilience des systèmes et des sociétés et à améliorer la qualité des environnements fluviaux. Cette contribution expose la trajectoire de l'hydrogéomorphologie au Québec à partir des publications scientifiques de géographes du Québec et discute des visées de la discipline en recherche et en intégration des connaissances pour la gestion des cours d'eau . , Abstract Hydrogeomorphology studies river dynamics, focusing on the interactions between flow structure, sediment transport, and the morphologies that characterize rivers and their watersheds. It provides an analytical framework and tools for better integrating knowledge of river dynamics into river management in the broadest sense, and more specifically, into river restoration as well as into the assessment and prevention of risks associated with fluvial hazards. In Quebec, hydrogeomorphology is emerging as a significant contribution to risk assessment and management approaches, and is at the heart of a paradigm shift in river management whereby process restoration aims to increase the resilience of fluvial systems and societies, and improve the quality of fluvial environments. This contribution outlines the trajectory of hydrogeomorphology in Quebec, based on scientific publications by Quebec geographers, and discusses the discipline's aims in research and knowledge integration for river management . , Messages clés Les géographes du Québec ont contribué fortement au développement des connaissances et outils de l'hydrogéomorphologie. L'hydrogéomorphologie a évolué d'une science fondamentale à une science où les connaissances fondamentales sont au service de la gestion des cours d'eau. L'hydrogéomorphologie et le cortège de connaissances et d'outils qu'elle promeut font de cette discipline une partenaire clé pour une gestion holistique des cours d'eau.