Votre recherche
Résultats 8 ressources
-
AbstractThe frequency and severity of floods has increased in different regions of the world due to climate change. Although the impact of floods on human health has been extensively studied, the increase in the segments of the population that are likely to be impacted by floods in the future makes it necessary to examine how adaptation measures impact the mental health of individuals affected by these natural disasters. The goal of this scoping review is to document the existing studies on flood adaptation measures and their impact on the mental health of affected populations, in order to identify the best preventive strategies as well as limitations that deserve further exploration. This study employed the methodology of the PRISMA-ScR extension for scoping reviews to systematically search the databases Medline and Web of Science to identify studies that examined the impact of adaptation measures on the mental health of flood victims. The database queries resulted in a total of 857 records from both databases. Following two rounds of screening, 9 studies were included for full-text analysis. Most of the analyzed studies sought to identify the factors that drive resilience in flood victims, particularly in the context of social capital (6 studies), whereas the remaining studies analyzed the impact of external interventions on the mental health of flood victims, either from preventive or post-disaster measures (3 studies). There is a very limited number of studies that analyze the impact of adaptation measures on the mental health of populations and individuals affected by floods, which complicates the generalizability of their findings. There is a need for public health policies and guidelines for the development of flood adaptation measures that adequately consider a social component that can be used to support the mental health of flood victims.
-
Combined sewer surcharges in densely urbanized areas have become more frequent due to the expansion of impervious surfaces and intensified precipitation caused by climate change. These surcharges can generate system overflows, causing urban flooding and pollution of urban areas. This paper presents a novel methodology to mitigate sewer system surcharges and control surface water. In this methodology, flow control devices and urban landscape retrofitting are proposed as strategies to reduce water inflow into the sewer network and manage excess water on the surface during extreme rainfall events. For this purpose, a 1D/2D dual drainage model was developed for two case studies located in Montreal, Canada. Applying the proposed methodology to these two sites led to a reduction of the volume of wastewater overflows by 100% and 86%, and a decrease in the number of surface overflows by 100% and 71%, respectively, at the two sites for a 100-year return period 3-h Chicago design rainfall. It also controlled the extent of flooding, reduced the volume of uncontrolled surface floods by 78% and 80% and decreased flooded areas by 68% and 42%, respectively, at the two sites for the same design rainfall.
-
Abstract Climate change is affecting freshwater systems, leading to increased water temperatures, which is posing a threat to freshwater ecological communities. In the Nechako River, a water management program has been in place since the 1980s to maintain water temperatures at 20°C during the migration of Sockeye salmon. However, the program's effectiveness in mitigating the impacts of climate change on resident species like Chinook salmon's thermal exposure is uncertain. In this study, we utilised the CEQUEAU hydrological model and life stage-specific physiological data to evaluate the consequences of the current program on Chinook salmon's thermal exposure under two contrasting climate change and socio-economic scenarios (SSP2-4.5 and SSP5-8.5). The results indicate that the thermal exposure risk is projected to be above the optimal threshold for parr and adult life stages under both scenarios relative to the 1980s. These life stages could face an increase in thermal exposure ranging from up to 2 and 5 times by 2090s relative to the 1980s during the months they occurred under the SSP5-8.5 scenario, including when the program is active (July 20th to August 20th). Additionally, our study shows that climate change will result in a substantial rise in cumulative heat degree days, ranging from 1.9 to 5.8 times (2050s) and 2.9 to 12.9 times (2090s) in comparison to the 1980s under SSP5-8.5. Our study highlights the need for a holistic approach to review the current Nechako management plan and consider all species in the Nechako River system in the face of climate change.
-
Abstract. In northern cold-temperate countries, a large portion of annual streamflow is produced by spring snowmelt, which often triggers floods. It is important to have spatial information about snow parameters such as snow water equivalent (SWE), which can be incorporated into hydrological models, making them more efficient tools for improved decision-making. The future Terrestrial Snow Mass Mission (TSMM) aims to provide high-resolution spatially distributed SWE information; thus, spatial SWE calibration should be considered along with conventional streamflow calibration for model optimization since the overall water balance is often a key objective in the hydrological modelling. The present research implements a unique spatial pattern metric in a multi-objective framework for calibration approach of hydrological models and attempts to determine whether raw SNODAS data can be utilized for hydrological model calibration. The SPAtial Efficiency (SPAEF) metric is explored for spatially calibrating SWE. The HYDROTEL hydrological model is applied to the Au Saumon River Watershed (∽1120 km2) in Eastern Canada using MSWEP precipitation data and ERA-5 land reanalysis temperature data as input to generate high-resolution SWE and streamflow. Different calibration experiments are performed combining Nash-Sutcliffe efficiency (NSE) for streamflow and root-mean-square error (RMSE), and SPAEF for SWE, using the Dynamically Dimensioned Search (DDS) and Pareto Archived Multi-Objective Optimization (PADDS) algorithms. Results of the study demonstrate that multi-objective calibration outperforms sequential calibration in terms of model performance. Traditional model calibration involving only streamflow produced slightly higher NSE values; however, the spatial distribution of SWE could not be adequately maintained. This study indicates that utilizing SPAEF for spatial calibration of snow parameters improved streamflow prediction compared to the conventional practice of using RMSE for calibration. SPAEF is further implied to be a more effective metric than RMSE for both sequential and multi-objective calibration. During validation, the calibration experiment incorporating multi-objective SPAEF exhibits enhanced performance in terms of NSE and Kling-Gupta Efficiency (KGE) compared to calibration experiment solely based on NSE. This observation supports the notion that incorporating SPAEF computed on raw SNODAS data within the calibration framework results in a more robust hydrological model.
-
Seasonal forecasting of spring floods in snow-covered basins is challenging due to the ambiguity in the driving processes, uncertain estimations of antecedent catchment conditions and the choice of predictor variables. In this study we attempt to improve the prediction of spring flow peaks in southern Quebec, Canada, by studying the preconditioning mechanisms of runoff generation and their impact on inter-annual variations in the timing and magnitude of spring peak flow. Historical observations and simulated data from a hydrological and snowmelt model were used to study the antecedent conditions that control flood characteristics in twelve snow-dominated catchments. Maximum snow accumulation (peak SWE), snowmelt and rainfall volume, snowmelt and rainfall intensity, and soil moisture were estimated during the pre-flood period. Stepwise multivariate linear regression analysis was used to identify the most relevant predictors and assess their relative contribution to the interannual variability of flood characteristics. Results show that interannual variations in spring peak flow are controlled differently between basins. Overall, interannual variations in peak flow were mainly governed, in order of importance, by snowmelt intensity, rainfall intensity, snowmelt volume, rainfall volume, peak SWE, and soil moisture. Variations in the timing of peak flow were controlled in most basins by rainfall volume and rainfall and snowmelt intensity. In the northernmost, snow-dominated basins, pre-flood rainfall amount and intensity mostly controlled peak flow variability, whereas in the southern, rainier basins snowpack conditions and melt dynamics controlled this variability. Snowpack interannual variations were found to be less important than variations in rainfall in forested basins, where snowmelt is more gradual. Conversely, peak flow was more sensitive to snowpack conditions in agricultural basins where snowmelt occurs faster. These results highlight the impact of land cover and use on spring flood generation mechanism, and the limited predictability potential of spring floods using simple methods and antecedent hydrological factors.
-
Abstract Background Climate change (CC) adaptation is considered a priority for Caribbean Small Islands Developing States (SIDS), as these territories and communities are considered particularly vulnerable to climate-related events. The primary health care (PHC) system is an important actor in contributing to climate change adaptation. However, knowledge on how PHC is prepared for CC in Caribbean SIDS is very limited. The objective of this paper is to discuss health adaptation to climate change focusing on the PHC system. Methods We explored the perspectives of PHC professionals in Dominica on climate change. Focus group discussions (FGDs) were conducted in each of the seven health districts in Dominica, a Caribbean SIDS, between November 2021 and January 2022. The semi-structured interview guide was based on the Essential Public Health Functions: assessment, access to health care services, policy development and resource allocation. Data coding was organized accordingly. Results Findings suggest that health care providers perceive climate change as contributing to an increase in NCDs and mental health problems. Climate-related events create barriers to care and exacerbate the chronic deficiencies within the health system, especially in the absence of high-level policy support. Healthcare providers need to take a holistic view of health and act accordingly in terms of disease prevention and health promotion, epidemiological surveillance, and ensuring the widest possible access to health care, with a particular focus on the ecological and social determinants of vulnerability. Conclusion The Primary Health Care system should be a key actor in designing and operationalizing adaptation and transformative resilience. The Essential Public Health Functions should integrate social and climate and ecological determinants of health to guide primary care activities to protect the health of communities. This indicates a need for improved research on the linkages between climate events and health outcomes, surveillance, and development of plans that are guided by contextual knowledge in the SIDS.