UQAM logo
Page d'accueil de l'UQAM Étudier à l'UQAM Bottin du personnel Carte du campus Bibliothèques Pour nous joindre

Service des bibliothèques

Veille bibliographique sur les inondations
UQAM logo
Veille bibliographique sur les inondations
  • Bibliography
  1. Vitrine des bibliographies
  2. Veille bibliographique sur les inondations
  3. Résultats
Veille bibliographique sur les inondationsVeille bibliographique sur les inondations
  • Bibliography

Votre recherche

Réinitialiser la recherche

Aide

L’interface de recherche est composée de trois sections : Rechercher, Explorer et Résultats. Celles-ci sont décrites en détail ci-dessous.

Vous pouvez lancer une recherche aussi bien à partir de la section Rechercher qu’à partir de la section Explorer.

Rechercher

Cette section affiche vos critères de recherche courants et vous permet de soumettre des mots-clés à chercher dans la bibliographie.

  • Chaque nouvelle soumission ajoute les mots-clés saisis à la liste des critères de recherche.
  • Pour lancer une nouvelle recherche plutôt qu’ajouter des mots-clés à la recherche courante, utilisez le bouton Réinitialiser la recherche, puis entrez vos mots-clés.
  • Pour remplacer un mot-clé déjà soumis, veuillez d’abord le retirer en décochant sa case à cocher, puis soumettre un nouveau mot-clé.
  • Vous pouvez contrôler la portée de votre recherche en choisissant où chercher. Les options sont :
    • Partout : repère vos mots-clés dans tous les champs des références bibliographiques ainsi que dans le contenu textuel des documents disponibles.
    • Dans les auteurs ou contributeurs : repère vos mots-clés dans les noms d’auteurs ou de contributeurs.
    • Dans les titres : repère vos mots-clés dans les titres.
    • Dans les années de publication : repère vos mots-clés dans le champ d’année de publication (vous pouvez utiliser l’opérateur OU avec vos mots-clés pour trouver des références ayant différentes années de publication. Par exemple, 2020 OU 2021).
    • Dans tous les champs : repère vos mots-clés dans tous les champs des notices bibliographiques.
    • Dans les documents : repère vos mots-clés dans le contenu textuel des documents disponibles.
  • Vous pouvez utiliser les opérateurs booléens avec vos mots-clés :
    • ET : repère les références qui contiennent tous les termes fournis. Ceci est la relation par défaut entre les termes séparés d’un espace. Par exemple, a b est équivalent à a ET b.
    • OU : repère les références qui contiennent n’importe lequel des termes fournis. Par exemple, a OU b.
    • SAUF : exclut les références qui contiennent le terme fourni. Par exemple, SAUF a.
    • Les opérateurs booléens doivent être saisis en MAJUSCULES.
  • Vous pouvez faire des groupements logiques (avec les parenthèses) pour éviter les ambiguïtés lors de la combinaison de plusieurs opérateurs booléens. Par exemple, (a OU b) ET c.
  • Vous pouvez demander une séquence exacte de mots (avec les guillemets droits), par exemple "a b c". Par défaut la différence entre les positions des mots est de 1, ce qui signifie qu’une référence sera repérée si elle contient les mots et qu’ils sont consécutifs. Une distance maximale différente peut être fournie (avec le tilde), par exemple "a b"~2 permet jusqu’à un terme entre a et b, ce qui signifie que la séquence a c b pourrait être repérée aussi bien que a b.
  • Vous pouvez préciser que certains termes sont plus importants que d’autres (avec l’accent circonflexe). Par exemple, a^2 b c^0.5 indique que a est deux fois plus important que b dans le calcul de pertinence des résultats, tandis que c est de moitié moins important. Ce type de facteur peut être appliqué à un groupement logique, par exemple (a b)^3 c.
  • La recherche par mots-clés est insensible à la casse et les accents et la ponctuation sont ignorés.
  • Les terminaisons des mots sont amputées pour la plupart des champs, tels le titre, le résumé et les notes. L’amputation des terminaisons vous évite d’avoir à prévoir toutes les formes possibles d’un mot dans vos recherches. Ainsi, les termes municipal, municipale et municipaux, par exemple, donneront tous le même résultat. L’amputation des terminaisons n’est pas appliquée au texte des champs de noms, tels auteurs/contributeurs, éditeur, publication.

Explorer

Cette section vous permet d’explorer les catégories associées aux références.

  • Les catégories peuvent servir à affiner votre recherche. Cochez une catégorie pour l’ajouter à vos critères de recherche. Les résultats seront alors restreints aux références qui sont associées à cette catégorie.
  • Dé-cochez une catégorie pour la retirer de vos critères de recherche et élargir votre recherche.
  • Les nombres affichés à côté des catégories indiquent combien de références sont associées à chaque catégorie considérant les résultats de recherche courants. Ces nombres varieront en fonction de vos critères de recherche, de manière à toujours décrire le jeu de résultats courant. De même, des catégories et des facettes entières pourront disparaître lorsque les résultats de recherche ne contiennent aucune référence leur étant associées.
  • Une icône de flèche () apparaissant à côté d’une catégorie indique que des sous-catégories sont disponibles. Vous pouvez appuyer sur l’icône pour faire afficher la liste de ces catégories plus spécifiques. Par la suite, vous pouvez appuyer à nouveau pour masquer la liste. L’action d’afficher ou de masquer les sous-catégories ne modifie pas vos critères de recherche; ceci vous permet de rapidement explorer l’arborescence des catégories, si désiré.

Résultats

Cette section présente les résultats de recherche. Si aucun critère de recherche n’a été fourni, elle montre toute la bibliographie (jusqu’à 20 références par page).

  • Chaque référence de la liste des résultats est un hyperlien vers sa notice bibliographique complète. À partir de la notice, vous pouvez continuer à explorer les résultats de recherche en naviguant vers les notices précédentes ou suivantes de vos résultats de recherche, ou encore retourner à la liste des résultats.
  • Des hyperliens supplémentaires, tels que Consulter le document ou Consulter sur [nom d’un site web], peuvent apparaître sous un résultat de recherche. Ces liens vous fournissent un accès rapide à la ressource, des liens que vous trouverez également dans la notice bibliographique.
  • Le bouton Résumés vous permet d’activer ou de désactiver l’affichage des résumés dans la liste des résultats de recherche. Toutefois, activer l’affichage des résumés n’aura aucun effet sur les résultats pour lesquels aucun résumé n’est disponible.
  • Diverses options sont fournies pour permettre de contrôler l’ordonnancement les résultats de recherche. L’une d’elles est l’option de tri par Pertinence, qui classe les résultats du plus pertinent au moins pertinent. Le score utilisé à cette fin prend en compte la fréquence des mots ainsi que les champs dans lesquels ils apparaissent. Par exemple, si un terme recherché apparaît fréquemment dans une référence ou est l’un d’un très petit nombre de termes utilisé dans cette référence, cette référence aura probablement un score plus élevé qu’une autre où le terme apparaît moins fréquemment ou qui contient un très grand nombre de mots. De même, le score sera plus élevé si un terme est rare dans l’ensemble de la bibliographie que s’il est très commun. De plus, si un terme de recherche apparaît par exemple dans le titre d’une référence, le score de cette référence sera plus élevé que s’il apparaissait dans un champ moins important tel le résumé.
  • Le tri par Pertinence n’est disponible qu’après avoir soumis des mots-clés par le biais de la section Rechercher.
  • Les catégories sélectionnées dans la section Explorer n’ont aucun effet sur le tri par pertinence. Elles ne font que filtrer la liste des résultats.
Type de ressource
  • Article de revue
Année de publication
  • Entre 2000 et 2025
    • Entre 2020 et 2025
      • 2022

Résultats 138 ressources

Recently addedDate décroissanteDate croissanteAuteur A-ZAuteur Z-ATitre A-ZTitre Z-A
  • 1
  • 2
  • 3
  • 4
  • 5
  • ...
  • 7
  • Page 1 de 7
Résumés
  • Hall, R., Pal, D., & Ariya, P. A. (2022). Novel Dynamic Technique, Nano-DIHM, for Rapid Detection of Oil, Heavy Metals, and Biological Spills in Aquatic Systems. Analytical Chemistry, 94(32). https://doi.org/10.1021/acs.analchem.2c02396
    Consulter sur pubs.acs.org
  • Khorsandi, M., St-Hilaire, A., & Arsenault, R. (2022). Multisite calibration of a semi-distributed hydrologic and thermal model in a large Canadian watershed. Hydrological Sciences Journal, 67(14), 2147–2174. https://doi.org/10.1080/02626667.2022.2132161
    Consulter sur www.tandfonline.com
  • Li, M., McGrath, H., & Stefanakis, E. (2022). Geovisualization of Hydrological Flow in Hexagonal Grid Systems. Geographies, 2(2), 227–244. https://doi.org/10.3390/geographies2020016

    Recent research has extended conventional hydrological algorithms into a hexagonal grid and noted that hydrological modeling on a hexagonal mesh grid outperformed that on a rectangular grid. Among the hydrological products, flow routing grids are the base of many other hydrological simulations, such as flow accumulation, watershed delineation, and stream networks. However, most of the previous research adopted the D6 algorithm, which is analogous to the D8 algorithm over a rectangular grid, to produce flow routing. This paper explored another four methods regarding generating flow directions in a hexagonal grid, based on four algorithms of slope aspect computation. We also developed and visualized hexagonal-grid-based hydrological operations, including flow accumulation, watershed delineation, and hydrological indices computation. Experiments were carried out across multiple grid resolutions with various terrain roughness. The results showed that flow direction can vary among different approaches, and the impact of such variation can propagate to flow accumulation, watershed delineation, and hydrological indices production, which was reflected by the cell-wise comparison and visualization. This research is practical for hydrological analysis in hexagonal, hierarchical grids, such as Discrete Global Grid Systems, and the developed operations can be used in flood modeling in the real world.

    Consulter sur www.mdpi.com
  • Mai, J., Shen, H., Tolson, B. A., Gaborit, É., Arsenault, R., Craig, J. R., Fortin, V., Fry, L. M., Gauch, M., Klotz, D., Kratzert, F., O’Brien, N., Princz, D. G., Rasiya Koya, S., Roy, T., Seglenieks, F., Shrestha, N. K., Temgoua, A. G. T., Vionnet, V., & Waddell, J. W. (2022). The Great Lakes Runoff Intercomparison Project Phase 4: the Great Lakes (GRIP-GL). Hydrology and Earth System Sciences, 26(13), 3537–3572. https://doi.org/10.5194/hess-26-3537-2022

    Abstract. Model intercomparison studies are carried out to test and compare the simulated outputs of various model setups over the same study domain. The Great Lakes region is such a domain of high public interest as it not only resembles a challenging region to model with its transboundary location, strong lake effects, and regions of strong human impact but is also one of the most densely populated areas in the USA and Canada. This study brought together a wide range of researchers setting up their models of choice in a highly standardized experimental setup using the same geophysical datasets, forcings, common routing product, and locations of performance evaluation across the 1×106 km2 study domain. The study comprises 13 models covering a wide range of model types from machine-learning-based, basin-wise, subbasin-based, and gridded models that are either locally or globally calibrated or calibrated for one of each of the six predefined regions of the watershed. Unlike most hydrologically focused model intercomparisons, this study not only compares models regarding their capability to simulate streamflow (Q) but also evaluates the quality of simulated actual evapotranspiration (AET), surface soil moisture (SSM), and snow water equivalent (SWE). The latter three outputs are compared against gridded reference datasets. The comparisons are performed in two ways – either by aggregating model outputs and the reference to basin level or by regridding all model outputs to the reference grid and comparing the model simulations at each grid-cell. The main results of this study are as follows: The comparison of models regarding streamflow reveals the superior quality of the machine-learning-based model in the performance of all experiments; even for the most challenging spatiotemporal validation, the machine learning (ML) model outperforms any other physically based model. While the locally calibrated models lead to good performance in calibration and temporal validation (even outperforming several regionally calibrated models), they lose performance when they are transferred to locations that the model has not been calibrated on. This is likely to be improved with more advanced strategies to transfer these models in space. The regionally calibrated models – while losing less performance in spatial and spatiotemporal validation than locally calibrated models – exhibit low performances in highly regulated and urban areas and agricultural regions in the USA. Comparisons of additional model outputs (AET, SSM, and SWE) against gridded reference datasets show that aggregating model outputs and the reference dataset to the basin scale can lead to different conclusions than a comparison at the native grid scale. The latter is deemed preferable, especially for variables with large spatial variability such as SWE. A multi-objective-based analysis of the model performances across all variables (Q, AET, SSM, and SWE) reveals overall well-performing locally calibrated models (i.e., HYMOD2-lumped) and regionally calibrated models (i.e., MESH-SVS-Raven and GEM-Hydro-Watroute) due to varying reasons. The machine-learning-based model was not included here as it is not set up to simulate AET, SSM, and SWE. All basin-aggregated model outputs and observations for the model variables evaluated in this study are available on an interactive website that enables users to visualize results and download the data and model outputs.

    Consulter sur hess.copernicus.org
  • Mai, J., Craig, J. R., Tolson, B. A., & Arsenault, R. (2022). The sensitivity of simulated streamflow to individual hydrologic processes across North America. Nature Communications, 13(1), 455. https://doi.org/10.1038/s41467-022-28010-7

    Abstract Streamflow sensitivity to different hydrologic processes varies in both space and time. This sensitivity is traditionally evaluated for the parameters specific to a given hydrologic model simulating streamflow. In this study, we apply a novel analysis over more than 3000 basins across North America considering a blended hydrologic model structure, which includes not only parametric, but also structural uncertainties. This enables seamless quantification of model process sensitivities and parameter sensitivities across a continuous set of models. It also leads to high-level conclusions about the importance of water cycle components on streamflow predictions, such as quickflow being the most sensitive process for streamflow simulations across the North American continent. The results of the 3000 basins are used to derive an approximation of sensitivities based on physiographic and climatologic data without the need to perform expensive sensitivity analyses. Detailed spatio-temporal inputs and results are shared through an interactive website.

    Consulter sur www.nature.com
  • Martel, J. ‐L., Brissette, F., Troin, M., Arsenault, R., Chen, J., Su, T., & Lucas‐Picher, P. (2022). CMIP5 and CMIP6 Model Projection Comparison for Hydrological Impacts Over North America. Geophysical Research Letters, 49(15). https://doi.org/10.1029/2022GL098364

    Abstract A warmer climate impacts streamflows and these changes need to be quantified to assess future risk, vulnerability, and to implement efficient adaptation measures. The climate simulations from the fifth phase of the Coupled Model Intercomparison Project (CMIP5), which have been the basis of most such assessments over the past decade, are being gradually superseded by the more recent Coupled Model Intercomparison Project Phase 6 (CMIP6). Our study portrays the added value of the CMIP6 ensemble over CMIP5 in a first North America wide comparison using 3,107 catchments. Results show a reduced spread of the CMIP6 ensemble compared to the CMIP5 ensemble for temperature and precipitation projections. In terms of flow indicators, the CMIP6 driven hydrological projections result in a smaller spread of future mean and high flow values, except for mountainous areas. Overall, we assess that the CMIP6 ensemble provides a narrower band of uncertainty of future climate projections, bringing more confidence for hydrological impact studies. , Plain Language Summary Greenhouse gas emissions are causing the climate to warm significantly, which in turn impacts flows in rivers worldwide. To adapt to these changes, it is essential to quantify them and assess future risk and vulnerability. Climate models are the primary tools used to achieve this. The main data set that provides scientists with state‐of‐the‐art climate model simulations is known as the Coupled Model Intercomparison Project (CMIP). The fifth phase of that project (CMIP5) has been used over the past decade in multiple hydrological studies to assess the impacts of climate change on streamflow. The more recent sixth phase (CMIP6) has started to generate projections, which brings the following question: is it necessary to update the hydrological impact studies performed using CMIP5 with the new CMIP6 models? To answer this question, a comparison between CMIP5 and CMIP6 using 3,107 catchments over North America was conducted. Results show that there is less spread in temperature and precipitation projections for CMIP6. This translates into a smaller spread of future mean, high and low flow values, except for mountainous areas. Overall, we assess that using the CMIP6 data set would provide a more concerted range of future climate projections, leading to more confident hydrological impact studies. , Key Points A comparison of hydrological impacts using Coupled Model Intercomparison Project version 5 (CMIP5) and Coupled Model Intercomparison Project Phase 6 (CMIP6) ensembles is performed over 3,107 catchments in North America The CMIP6 ensembles provide a narrower band of uncertainty for hydrological indicators in the future It is recommended to update hydrological impact studies performed using CMIP5 with the CMIP6 ensemble

    Consulter le document
  • Mohammadian, A., Morse, B., & Robert, J.-L. (2022). Calibration of a 3D hydrodynamic model for a hypertidal estuary with complex irregular bathymetry using adaptive parametrization of bottom roughness and eddy viscosity. Estuarine, Coastal and Shelf Science, 265, 107655. https://doi.org/10.1016/j.ecss.2021.107655
    Consulter sur linkinghub.elsevier.com
  • Nohrstedt, D., Hileman, J., Mazzoleni, M., Di Baldassarre, G., & Parker, C. F. (2022). Exploring disaster impacts on adaptation actions in 549 cities worldwide. Nature Communications, 13(1). https://doi.org/10.1038/s41467-022-31059-z

    Whether disasters influence adaptation actions in cities is contested. Yet, the extant knowledge base primarily consists of single or small-N case studies, so there is no global overview of the evidence on disaster impacts and adaptation. Here, we use regression analysis to explore the effects of disaster frequency and severity on four adaptation action types in 549 cities. In countries with greater adaptive capacity, economic losses increase city-level actions targeting recently experienced disaster event types, as well as actions to strengthen general disaster preparedness. An increase in disaster frequency reduces actions targeting hazard types other than those that recently occurred, while human losses have few effects. Comparisons between cities across levels of adaptive capacity indicate a wealth effect. More affluent countries incur greater economic damages from disasters, but also have higher governance capacity, creating both incentives and opportunities for adaptation measures. While disaster frequency and severity had a limited impact on adaptation actions overall, results are sensitive to which disaster impacts, adaptation action types, and adaptive capacities are considered.

  • Ponton, D. E., Ruelas-Inzunza, J., Lavoie, R. A., Lescord, G. L., Johnston, T. A., Graydon, J. A., Reichert, M., Donadt, C., Poesch, M., Gunn, J. M., & Amyot, M. (2022). Mercury, selenium and arsenic concentrations in Canadian freshwater fish and a perspective on human consumption intake and risk. Journal of Hazardous Materials Advances, 6, 100060. https://doi.org/10.1016/j.hazadv.2022.100060
    Consulter sur linkinghub.elsevier.com
  • Razmi, A., Mardani-Fard, H. A., Golian, S., & Zahmatkesh, Z. (2022). Time-Varying Univariate and Bivariate Frequency Analysis of Nonstationary Extreme Sea Level for New York City. Environmental Processes, 9(1), 8. https://doi.org/10.1007/s40710-021-00553-9
    Consulter sur link.springer.com
  • Ritchie, H., Bélair, S., Bernier, N. B., Buehner, M., Charron, M., Fortin, V., Garand, L., Houtekamer, P., Husain, S. Z., Laroche, S., Lemieux, J.-F., Lin, H., McTaggart-Cowan, R., Milbrandt, J. A., Mitchell, H. L., Pellerin, P., Pudykiewicz, J., Separovic, L., Smith, G. C., … Vaillancourt, P. A. (2022). Recherche en Prévision Numérique Contributions to Numerical Weather Prediction. Atmosphere-Ocean. https://doi.org/10.1080/07055900.2022.2038071

    This is a review article invited by Atmosphere-Ocean to document the contributions of Recherche en Prévision Numérique (RPN) to Numerical Weather Prediction (NWP). It is structured as a historical review and documents RPN’s contributions to numerical methods, numerical modelling, data assimilation, and ensemble systems, with a look ahead to potential future systems. Through this review, we highlight the evolution of RPN’s contributions. We begin with early NWP efforts and continue through to environmental predictions with a broad range of applications. This synthesis is intended to be a helpful reference, consolidating developments and generating broader interest for future work on NWP in Canada.

  • Taylor, Z. J., & Aalbers, M. B. (2022). Climate Gentrification: Risk, Rent, and Restructuring in Greater Miami. Annals of the American Association of Geographers, 112(6), 1685–1701. https://doi.org/10.1080/24694452.2021.2000358
    Consulter sur www.tandfonline.com
  • Thaler, T. (2022). Human–water research: discussion of “guiding principles for hydrologists conducting interdisciplinary research and fieldwork with participants.” Hydrological Sciences Journal-Journal Des Sciences Hydrologiques. https://doi.org/10.1080/02626667.2022.2128803

    Rangecroft et al. provide an important and interesting paper on the challenges of interdisciplinary research and fieldwork with participants in water resource management. The paper shows the challenges of interaction between their research areas and demonstrates the importance of how a researcher interacts with their selected study sites. My key points reflect the use of different methodologies within social and natural sciences and across them as well as the main challenge of who has the power to influence the research directions. Research is not value-free and is highly influenced by one’s own training and knowledge, which needs to be addressed in the research activities. Finally, an option might be to move beyond interdisciplinary constraints and to work within a stronger transdisciplinary framework. Water research very much needs to interact with non-academic people to understand the challenges and possible solutions.

  • Bouwer, L. M. (2022). The Roles of Climate Risk Dynamics and Adaptation Limits in Adaptation Assessment. Springer Climate, 209–216. https://doi.org/10.1007/978-3-030-86211-4_24

    Abstract The performance of adaptation measures depends on their robustness against various possible futures, with varying climate change impacts. Such impacts are driven by both climatic as well as non-climatic drivers. Risk dynamics are then important, as the avoided risk will determine the benefits of adaptation actions. It is argued that the integration of information on changing exposure and vulnerability is needed to make projections of future climate risk more realistic. In addition, many impact and vulnerability studies have used a top-down rather a technical approach. Whether adaptation action is feasible is determined by technical and physical possibilities on the ground, as well as local capacities, governance and preference. These determine the hard and soft limits of adaptation. Therefore, it is argued that the risk metrics outputs alone are not sufficient to predict adaptation outcomes, or predict where adaptation is feasible or not; they must be placed in the local context. Several of the current climate risk products would fall short of their promise to inform adaptation decision-making on the ground. Some steps are proposed to improve adaptation modelling in order to better incorporate these aspects.

  • Ahmed, S. S., Loewen, M. R., Zhang, W., Ghobrial, T. R., Zhu, D. Z., Mahmood, K., & Van Duin, B. (2022). Field observations of stratification in stormwater wet ponds. Journal of Environmental Management, 322. https://doi.org/10.1016/j.jenvman.2022.115988
    Consulter sur linkinghub.elsevier.com
  • Whittaker, C., & Leconte, R. (2022). A Hydrograph-Based Approach to Improve Satellite-Derived Snow Water Equivalent at the Watershed Scale. Water, 14(21). https://doi.org/10.3390/w14213575

    For the past few decades, remote sensing has been a valuable tool for deriving global information on snow water equivalent (SWE), where products derived from space-borne passive microwave radiometers are favoured as they respond to snow depth, an important component of SWE. GlobSnow, a novel SWE product, has increased the accuracy of global-scale SWE estimates by combining remotely sensed radiometric data with other physiographic characteristics, such as snow depth, as quantified by climatic stations. However, research has demonstrated that passive microwaves algorithms tend to underestimate SWE for deep snowpack. Approaches were proposed to correct for such underestimation; however, they are computer intensive and complex to implement at the watershed scale. In this study, SWEmax information from the near real time 5-km GlobSnow product, provided by Copernicus and the European Space Agency (ESA) and GlobSnow product at 25 km resolution were corrected using a simple bias correction approach for watershed scale applications. This method, referred to as the Watershed Scale Correction (WSC) approach, estimates the bias based on the direct runoff that occurs during the spring melt season. Direct runoff is estimated on the one hand from SWEmax information as main input. Infiltration is also considered in computing direct runoff. An independent estimation of direct runoff from gauged stations is also performed. Discrepancy between these estimates allows for estimating the bias correction factor. This approach is advantageous as it exploits data that commonly exists i.e., flow at gauged stations and remotely sensed/reanalysis data such as snow cover and precipitation. The WSC approach was applied to watersheds located in Eastern Canada. It was found that the average bias moved from 33.5% with existing GlobSnow product to 18% with the corrected product, using the recommended recursive filter coefficient β of 0.925 for baseflow separation. Results show the usefulness of integrating direct runoff for bias correction of existing GlobSnow product at the watershed scale. In addition, potential benefits are offered using the recursive filter approach for baseflow separation of watersheds with limited in situ SWE measurements, to further reduce overall uncertainties and bias. The WSC approach should be appealing for poorly monitored watersheds where SWE measurements are critical for hydropower production and where snowmelt can pose serious flood-related damages.

    Consulter sur www.mdpi.com
  • Saint Criq, L., Gaume, E., Hamdi, Y., & Ouarda, T. B. M. J. (2022). Extreme Sea Level Estimation Combining Systematic Observed Skew Surges and Historical Record Sea Levels. Water Resources Research, 58(3). https://doi.org/10.1029/2021WR030873

    Abstract The estimation of sea levels corresponding to high return periods is crucial for coastal planning and for the design of coastal defenses. This paper deals with the use of historical observations, that is, events that occurred before the beginning of the systematic tide gauge recordings, to improve the estimation of design sea levels. Most of the recent publications dealing with statistical analyses applied to sea levels suggest that astronomical high tide levels and skew surges should be analyzed and modeled separately. Historical samples generally consist of observed record sea levels. Some extreme historical skew surges can easily remain unnoticed if they occur at low or moderate astronomical high tides and do not generate extreme sea levels. The exhaustiveness of historical skew surge series, which is an essential criterion for an unbiased statistical inference, can therefore not be guaranteed. This study proposes a model combining, in a single Bayesian inference procedure, information of two different natures for the calibration of the statistical distribution of skew surges: measured skew surges for the systematic period and extreme sea levels for the historical period. A data‐based comparison of the proposed model with previously published approaches is presented based on a large number of Monte Carlo simulations. The proposed model is applied to four locations on the French Atlantic and Channel coasts. Results indicate that the proposed model is more reliable and accurate than previously proposed methods that aim at the integration of historical records in coastal sea level or surge statistical analyses. , Plain Language Summary Coastal facilities must be designed as to be protected from extreme sea levels. Sea levels at high tide are the combination of astronomical high tides, which can be predicted, and skew surges. The estimation of the statistical distribution of skew surges is usually based on the skew surges measured by tide gauges and can be improved with the use of historical information, observations that occurred before the beginning of the tide gauge recordings. Extreme skew surges combined with low or moderate astronomical high tides would not necessarily generate extreme sea levels, and consequently some extreme historical skew surges could be missed. The exhaustiveness of historical information is an essential criterion for an unbiased estimation, but it cannot be guaranteed in the case of historical skew surges. The present study proposes to combine skew surges for the recent period and extreme sea levels for the historical period. The proposed model is compared to previously published approaches and appears to be more reliable and accurate. The proposed model is applied to four case studies on the French Atlantic and Channel coasts. , Key Points The exhaustiveness of historical sea record information is demonstrated based on French Atlantic coast data A comparative analysis of approaches to integrate historical information is carried out The efficiency of a new method for the combination of systematic skew surges and historical records is verified

    Consulter sur agupubs.onlinelibrary.wiley.com
  • Madaeni, F., Chokmani, K., Lhissou, R., Homayouni, S., Gauthier, Y., & Tolszczuk-Leclerc, S. (2022). Convolutional neural network and long short-term memory models for ice-jam predictions. The Cryosphere, 16(4). https://doi.org/10.5194/tc-16-1447-2022

    In cold regions, ice jams frequently result in severe flooding due to a rapid rise in water levels upstream of the jam. Sudden floods resulting from ice jams threaten human safety and cause damage to properties and infrastructure. Hence, ice-jam prediction tools can give an early warning to increase response time and minimize the possible damages. However, ice-jam prediction has always been a challenge as there is no analytical method available for this purpose. Nonetheless, ice jams form when some hydro-meteorological conditions happen, a few hours to a few days before the event. Ice-jam prediction can be addressed as a binary multivariate time-series classification. Deep learning techniques have been widely used for time-series classification in many fields such as finance, engineering, weather forecasting, and medicine. In this research, we successfully applied convolutional neural networks (CNN), long short-term memory (LSTM), and combined convolutional–long short-term memory (CNN-LSTM) networks to predict the formation of ice jams in 150 rivers in the province of Quebec (Canada). We also employed machine learning methods including support vector machine (SVM), k-nearest neighbors classifier (KNN), decision tree, and multilayer perceptron (MLP) for this purpose. The hydro-meteorological variables (e.g., temperature, precipitation, and snow depth) along with the corresponding jam or no-jam events are used as model inputs. Ten percent of the data were excluded from the model and set aside for testing, and 100 reshuffling and splitting iterations were applied to 80 % of the remaining data for training and 20 % for validation. The developed deep learning models achieved improvements in performance in comparison to the developed machine learning models. The results show that the CNN-LSTM model yields the best results in the validation and testing with F1 scores of 0.82 and 0.92, respectively. This demonstrates that CNN and LSTM models are complementary, and a combination of both further improves classification.

    Consulter sur tc.copernicus.org
  • Ouarda, T. B. M. J., Charron, C., & St-Hilaire, A. (2022). Regional estimation of river water temperature at ungauged locations. Journal of Hydrology X, 17. https://doi.org/10.1016/j.hydroa.2022.100133
    Consulter sur linkinghub.elsevier.com
  • Jalbert, J., Genest, C., & Perreault, L. (2022). Interpolation of Precipitation Extremes on a Large Domain Toward IDF Curve Construction at Unmonitored Locations. Journal of Agricultural, Biological and Environmental Statistics, 27(3), 461–486. https://doi.org/10.1007/s13253-022-00491-5

    Abstract An intensity–duration–frequency (IDF) curve describes the relationship between rainfall intensity and duration for a given return period and location. Such curves are obtained through frequency analysis of rainfall data and commonly used in infrastructure design, flood protection, water management, and urban drainage systems. However, they are typically available only in sparse locations. Data for other sites must be interpolated as the need arises. This paper describes how extreme precipitation of several durations can be interpolated to compute IDF curves on a large, sparse domain. In the absence of local data, a reconstruction of the historical meteorology is used as a covariate for interpolating extreme precipitation characteristics. This covariate is included in a hierarchical Bayesian spatial model for extreme precipitations. This model is especially well suited for a covariate gridded structure, thereby enabling fast and precise computations. As an illustration, the methodology is used to construct IDF curves over Eastern Canada. An extensive cross-validation study shows that at locations where data are available, the proposed method generally improves on the current practice of Environment and Climate Change Canada which relies on a moment-based fit of the Gumbel extreme-value distribution.

    Consulter sur link.springer.com
  • 1
  • 2
  • 3
  • 4
  • 5
  • ...
  • 7
  • Page 1 de 7
RIS

Format recommandé pour la plupart des logiciels de gestion de références bibliographiques

BibTeX

Format recommandé pour les logiciels spécialement conçus pour BibTeX

Flux web personnalisé
Dernière mise à jour depuis la base de données : 2025-06-16 06 h 56 (UTC)

Explorer

Axes du RIISQ

  • 1 - aléas, vulnérabilités et exposition (4)
  • 2 - enjeux de gestion et de gouvernance (4)
  • 3 - aspects biopsychosociaux (14)
  • 4 - réduction des vulnérabilités (6)
  • 5 - aide à la décision, à l’adaptation et à la résilience (14)

Enjeux majeurs

  • Inégalités et événements extrêmes (6)
  • Risques systémiques (3)

Lieux

  • Canada (hors-Québec) (8)
  • Québec (province) (8)
  • États-Unis (2)
  • Europe (2)

Membres du RIISQ

  • Étudiant.es (9)
  • Dorner, Sarah (8)
  • Kinnard, Christophe (8)
  • Pham Van Bang, Damien (6)
  • Baraer, Michael (4)
  • Gachon, Philippe (4)
  • Lessard, Lily (4)
  • Généreux, Mélissa (3)
  • Maltais, Danielle (3)
  • Boivin, Maxime (2)
  • Brunet, Alain (2)
  • Gousse-Lessard, Anne-Sophie (2)
  • Shakibaeinia, Ahmad (2)
  • Cloos, Patrick (1)
  • Guillemette, François (1)
  • Hémond, Yannick (1)
  • Lizarralde, Gonzalo (1)
  • Nobert, Sébastien (1)
  • Rousseau, Alain (1)

Secteurs et disciplines

  • Nature et Technologie (22)
  • Santé (12)
  • Société et Culture (11)
  • Intersectoriel (1)

Types d'événements extrêmes

  • Inondations et crues (41)
  • Évènements liés au froid (neige, glace) (16)
  • Feux de forêts (1)
  • Sécheresses et canicules (1)

Types d'inondations

  • Fluviales (2)

Type de ressource

  • Article de revue

Année de publication

  • Entre 2000 et 2025
    • Entre 2020 et 2025
      • 2022

Langue de la ressource

  • Anglais (92)
  • Français (3)

Explorer

UQAM - Université du Québec à Montréal

  • Veille bibliographique sur les inondations
  • bibliotheques@uqam.ca

Accessibilité Web