Votre recherche
Résultats 121 ressources
-
Abstract A modified hybrid terrain-following vertical coordinate has recently been implemented within the Global Environmental Multiscale atmospheric model that introduces separately controlled height-dependent progressive decaying of the small- and large-scale orography contributions on the vertical coordinate surfaces. The new vertical coordinate allows for a faster decay of the finescale orography imprints on the coordinate surfaces with increasing height while relaxing the compression of the lowest model levels over complex terrain. A number of tests carried out—including experiments involving Environment and Climate Change Canada’s operational regional and global deterministic prediction systems—demonstrate that the new vertical coordinate effectively eliminates terrain-induced spurious generation and amplification of upper-air vertical motion and kinetic energy without increasing the computational cost. Results also show potential improvements in precipitation over complex terrain.
-
Hydrological systems are naturally complex and nonlinear. A large number of variables, many of which not yet well considered in regional frequency analysis (RFA), have a significant impact on hydrological dynamics and consequently on flood quantile estimates. Despite the increasing number of statistical tools used to estimate flood quantiles at ungauged sites, little attention has been dedicated to the development of new regional estimation (RE) models accounting for both nonlinear links and interactions between hydrological and physio-meteorological variables. The aim of this paper is to simultaneously take into account nonlinearity and interactions between variables by introducing the multivariate adaptive regression splines (MARS) approach in RFA. The predictive performances of MARS are compared with those obtained by one of the most robust RE models: the generalized additive model (GAM). Both approaches are applied to two datasets covering 151 hydrometric stations in the province of Quebec (Canada): a standard dataset (STA) containing commonly used variables and an extended dataset (EXTD) combining STA with additional variables dealing with drainage network characteristics. Results indicate that RE models using MARS with the EXTD outperform slightly RE models using GAM. Thus, MARS seems to allow for a better representation of the hydrological process and an increased predictive power in RFA.
-
This study details the enhancement and calibration of the Arctic implementation of the HYdrological Predictions for the Environment (HYPE) hydrological model established for the BaySys group of projects to produce freshwater discharge scenarios for the Hudson Bay Drainage Basin (HBDB). The challenge in producing estimates of freshwater discharge for the HBDB is that it spans over a third of Canada’s continental landmass and is 40% ungauged. Scenarios for BaySys require the separation between human and climate interactions, specifically the separation of regulated river discharge from a natural, climate-driven response. We present three key improvements to the modelling system required to support the identification of natural from anthropogenic impacts: representation of prairie disconnected landscapes (i.e., non-contributing areas), a method to generalize lake storage-discharge parameters across large regions, and frozen soil modifications. Additionally, a unique approach to account for irregular hydrometric gauge density across the basins during model calibration is presented that avoids overfitting parameters to the densely gauged southern regions. We summarize our methodologies used to facilitate improved separation of human and climate driven impacts to streamflow within the basin and outline the baseline discharge simulations used for the BaySys group of projects. Challenges remain for modeling the most northern reaches of the basin, and in the lake-dominated watersheds. The techniques presented in this work, particularly the lake and flow signature clusters, may be applied to other high latitude, ungauged Arctic basins. Discharge simulations are subsequently used as input data for oceanographic, biogeochemical, and ecosystem studies across the HBDB.
-
Abstract Centennial‐to‐millennial temperature records of the past provide a context for the interpretation of current and future changes in climate. Quaternary climates have been relatively well studied in north‐east North America and the adjacent Atlantic Ocean over the last decades, and new research methods have been developed to improve reconstructions. We present newly inferred reconstructions of sea surface temperature for the north‐western Atlantic region, together with a compilation of published temperature records. The database thus comprises a total of 86 records from both marine and terrestrial sites, including lakes, peatlands, ice and tree rings, each covering at least part of the Holocene. For each record, we present details on seasons covered, chronologies and information on radiocarbon dates and analytical time steps. The 86 records contain a total of 154 reconstructions of temperature and temperature‐related variables. Main proxies include pollen and dinocysts, while summer was the season for which the highest number of reconstructions were available. Many records covered most of the Holocene, but many dinocyst records did not extend to the surface, due to sediment mixing, and dendroclimate records were limited to the last millennium. The database allows for the exploration of linkages between sea ice and climate and may be used in conjunction with other palaeoclimate and palaeoenvironmental records, such as wildfire records and peatland dynamics. This inventory may also aid the identification of gaps in the geographic distribution of past temperature records thus guiding future research efforts.
-
Abstract Flood quantile estimation at sites with little or no data is important for the adequate planning and management of water resources. Regional Hydrological Frequency Analysis (RFA) deals with the estimation of hydrological variables at ungauged sites. Random Forest (RF) is an ensemble learning technique which uses multiple Classification and Regression Trees (CART) for classification, regression, and other tasks. The RF technique is gaining popularity in a number of fields because of its powerful non-linear and non-parametric nature. In the present study, we investigate the use of Random Forest Regression (RFR) in the estimation step of RFA based on a case study represented by data collected from 151 hydrometric stations from the province of Quebec, Canada. RFR is applied to the whole data set and to homogeneous regions of stations delineated by canonical correlation analysis (CCA). Using the Out-of-bag error rate feature of RF, the optimal number of trees for the dataset is calculated. The results of the application of the CCA based RFR model (CCA-RFR) are compared to results obtained with a number of other linear and non-linear RFA models. CCA-RFR leads to the best performance in terms of root mean squared error. The use of CCA to delineate neighborhoods improves considerably the performance of RFR. RFR is found to be simple to apply and more efficient than more complex models such as Artificial Neural Network-based models.
-
Fluvial systems in southern Ontario are regularly affected by widespread early-spring flood events primarily caused by rain-on-snow events. Recent studies have shown an increase in winter floods in this region due to increasing winter temperature and precipitation. Streamflow simulations are associated with uncertainties mainly due to the different scenarios of greenhouse gas emissions, global climate models (GCMs) or the choice of the hydrological model. The internal variability of climate, defined as the chaotic variability of atmospheric circulation due to natural internal processes within the climate system, is also a source of uncertainties to consider. Uncertainties of internal variability can be assessed using hydrological models fed by downscaled data of a global climate model large ensemble (GCM-LE), but GCM outputs have too coarse of a scale to be used in hydrological modeling. The Canadian Regional Climate Model Large Ensemble (CRCM5-LE), a 50-member ensemble downscaled from the Canadian Earth System Model version 2 Large Ensemble (CanESM2-LE), was developed to simulate local climate variability over northeastern North America under different future climate scenarios. In this study, CRCM5-LE temperature and precipitation projections under an RCP8.5 scenario were used as input in the Precipitation Runoff Modeling System (PRMS) to simulate streamflow at a near-future horizon (2026–2055) for four watersheds in southern Ontario. To investigate the role of the internal variability of climate in the modulation of streamflow, the 50 members were first grouped in classes of similar projected change in January–February streamflow and temperature and precipitation between 1961–1990 and 2026–2055. Then, the regional change in geopotential height (Z500) from CanESM2-LE was calculated for each class. Model simulations showed an average January–February increase in streamflow of 18 % (±8.7) in Big Creek, 30.5 % (±10.8) in Grand River, 29.8 % (±10.4) in Thames River and 31.2 % (±13.3) in Credit River. A total of 14 % of all ensemble members projected positive Z500 anomalies in North America's eastern coast enhancing rain, snowmelt and streamflow volume in January–February. For these members the increase of streamflow is expected to be as high as 31.6 % (±8.1) in Big Creek, 48.3 % (±11.1) in Grand River, 47 % (±9.6) in Thames River and 53.7 % (±15) in Credit River. Conversely, 14 % of the ensemble projected negative Z500 anomalies in North America's eastern coast and were associated with a much lower increase in streamflow: 8.3 % (±7.8) in Big Creek, 18.8 % (±5.8) in Grand River, 17.8 % (±6.4) in Thames River and 18.6 % (±6.5) in Credit River. These results provide important information to researchers, managers, policymakers and society about the expected ranges of increase in winter streamflow in a highly populated region of Canada, and they will help to explain how the internal variability of climate is expected to modulate the future streamflow in this region.
-
Abstract Reference evapotranspiration (ETo) is one of the most important factors in the hydrologic cycle and water balance studies. In this study, the performance of three simple and three wavelet hybrid models were compared to estimate ETo in three different climates in Iran, based on different combinations of input variables. It was found that the wavelet-artificial neural network was the best model, and multiple linear regression (MLR) was the worst model in most cases, although the performance of the models was related to the climate and the input variables used for modeling. Overall, it was found that all models had good accuracy in terms of estimating daily ETo. Also, it was found in this study that large numbers of decomposition levels via the wavelet transform had noticeable negative effects on the performance of the wavelet-based models, especially for the wavelet-adaptive network-based fuzzy inference system and wavelet-MLR, but in contrast, the type of db wavelet function did not have a detectable effect on the performance of the wavelet-based models.
-
Compound dry-hot events enlarge homogenously due to teleconnected land-atmosphere feedbacks. , Using over a century of ground-based observations over the contiguous United States, we show that the frequency of compound dry and hot extremes has increased substantially in the past decades, with an alarming increase in very rare dry-hot extremes. Our results indicate that the area affected by concurrent extremes has also increased significantly. Further, we explore homogeneity (i.e., connectedness) of dry-hot extremes across space. We show that dry-hot extremes have homogeneously enlarged over the past 122 years, pointing to spatial propagation of extreme dryness and heat and increased probability of continental-scale compound extremes. Last, we show an interesting shift between the main driver of dry-hot extremes over time. While meteorological drought was the main driver of dry-hot events in the 1930s, the observed warming trend has become the dominant driver in recent decades. Our results provide a deeper understanding of spatiotemporal variation of compound dry-hot extremes.
-
River restoration practice frequently employs conservative designs that create and maintain prescribed, static morphology. Such approaches ignore an emerging understanding of resilient river systems that typically adjust their morphology in response to hydrologic, vegetative and sediment supply changes. As such, using increased dynamism as a restoration design objective will arguably yield more diverse and productive habitats, better managed expectations, and more self-sustaining outcomes. Here, we answer the following question: does restoring lateral migration in a channelised river that was once a wandering gravel-bed river, result in more diverse in-channel geomorphology? We acquired pre- and post-restoration topographic surveys on a segment of the Allt Lorgy, Scotland to quantify morphodynamics and systematically map geomorphic units, using Geomorphic Unit Tool (GUT) software. GUT implements topographic definitions to discriminate between a taxonomy of fluvial landforms that have been developed from an extension of the River Styles framework, using 3-tiered hierarchy: (1) differentiation based on stage or elevation relative to channel; (2) classification of form based on shape (mound, bowl, trough, saddle, plane, wall); and (3) mapping geomorphic units based on attributes (e.g., position and orientation). Results showed restoration increased geomorphic unit diversity, with the Shannon Diversity Index increasing from 1.40 pre-restoration (2012) to 2.04 (2014) and 2.05 (2016) after restoration. Channel widening, due to bank erosion, caused aerial coverage of in-channel geomorphic units to increase 23% after restoration and 6% further in the two-years following restoration. Once bank protection was removed, allowing bank erosion yieled a local supply of sediment to enable the formation and maintenance of lateral and point bars, riffles and diagonal bar complexes, and instream wood created structurally-forced pools and riffles. The methodology used systematically quantifies how geomorphic unit diversity increases when a river is given back its freedom space. The framework allows for testing restoration design hypotheses in post-project appraisal.
-
Watershed management efforts in agriculturally dominated landscapes of North America face nearly two centuries of laws and policies that encouraged habitat destruction. Although streams and wetlands in these landscapes are actively being restored using designs that incorporate science and engineering, watershed drainage laws can constrain action or impact passively restored or naturalized habitat. In general, drainage laws require removal of any riparian vegetation or wood deemed to obstruct flow in streams regulated as drains. We use a case study from Indiana (USA) to introduce the shortcomings of drainage laws for allowing large wood, which is an important habitat feature, to remain in stream ecosystems. Removals of large wood from monitored stream reaches in a regulated drain were associated with subsequent declines in fish biomass. Such legal activities represent an important environmental management problem that exists under drainage laws which apply to streams over a widespread geographic region of North America. Recent litigation in Wisconsin (USA) suggests that if state legislatures fail to update these antiquated laws, the courts may act in favour of science-based management of drains. The statutes and regulations that govern agricultural drainage warrant careful consideration if streams within drainage districts are to be managed to improve ecological function. © 2020 John Wiley & Sons, Ltd.
-
Abstract Within the Copernicus Climate Change Service (C3S), ECMWF is producing the ERA5 reanalysis which, once completed, will embody a detailed record of the global atmosphere, land surface and ocean waves from 1950 onwards. This new reanalysis replaces the ERA‐Interim reanalysis (spanning 1979 onwards) which was started in 2006. ERA5 is based on the Integrated Forecasting System (IFS) Cy41r2 which was operational in 2016. ERA5 thus benefits from a decade of developments in model physics, core dynamics and data assimilation. In addition to a significantly enhanced horizontal resolution of 31 km, compared to 80 km for ERA‐Interim, ERA5 has hourly output throughout, and an uncertainty estimate from an ensemble (3‐hourly at half the horizontal resolution). This paper describes the general set‐up of ERA5, as well as a basic evaluation of characteristics and performance, with a focus on the dataset from 1979 onwards which is currently publicly available. Re‐forecasts from ERA5 analyses show a gain of up to one day in skill with respect to ERA‐Interim. Comparison with radiosonde and PILOT data prior to assimilation shows an improved fit for temperature, wind and humidity in the troposphere, but not the stratosphere. A comparison with independent buoy data shows a much improved fit for ocean wave height. The uncertainty estimate reflects the evolution of the observing systems used in ERA5. The enhanced temporal and spatial resolution allows for a detailed evolution of weather systems. For precipitation, global‐mean correlation with monthly‐mean GPCP data is increased from 67% to 77%. In general, low‐frequency variability is found to be well represented and from 10 hPa downwards general patterns of anomalies in temperature match those from the ERA‐Interim, MERRA‐2 and JRA‐55 reanalyses.
-
According to our survey about climate risk perceptions, institutional investors believe climate risks have financial implications for their portfolio firms and that these risks, particularly regulatory risks, already have begun to materialize. Many of the investors, especially the long-term, larger, and ESG-oriented ones, consider risk management and engagement, rather than divestment, to be the better approach for addressing climate risks. Although surveyed investors believe that some equity valuations do not fully reflect climate risks, their perceived overvaluations are not large.
-
Abstract As losses from extreme weather events grow, many governments are looking to privatize the financing and incentivization of climate adaptation through insurance markets. In a pure market approach to insurance for extreme weather events, individuals become responsible for ensuring they are adequately covered for risks to their own properties, and governments no longer contribute funds to post‐disaster recovery. Theoretically, insurance premiums signal the level of risk faced by each household, and incentivize homeowners to invest in adaptive action, such as retrofitting, or drainage work, to reduce premiums. Where risk is considered too high by insurance markets, housing is devalued, in theory leading to retreat from risky areas. In this review article, we evaluate the suitability of private insurance as a mechanism for climate adaptation at a household and community level. We find a mismatch between social understandings of responsibility for climate risks, and the technocratic, market‐based home insurance products offered by private insurance markets. We suggest that by constructing increasingly individualized, technical, and calculative evaluations of risk, market‐based models of insurance for extreme weather events erode the solidaristic and collective discourses and practices that support adaptive behavior. This article is categorized under: Vulnerability and Adaptation to Climate Change > Institutions for Adaptation