Votre recherche
Résultats 63 ressources
-
AbstractThe frequency and severity of floods has increased in different regions of the world due to climate change. Although the impact of floods on human health has been extensively studied, the increase in the segments of the population that are likely to be impacted by floods in the future makes it necessary to examine how adaptation measures impact the mental health of individuals affected by these natural disasters. The goal of this scoping review is to document the existing studies on flood adaptation measures and their impact on the mental health of affected populations, in order to identify the best preventive strategies as well as limitations that deserve further exploration. This study employed the methodology of the PRISMA-ScR extension for scoping reviews to systematically search the databases Medline and Web of Science to identify studies that examined the impact of adaptation measures on the mental health of flood victims. The database queries resulted in a total of 857 records from both databases. Following two rounds of screening, 9 studies were included for full-text analysis. Most of the analyzed studies sought to identify the factors that drive resilience in flood victims, particularly in the context of social capital (6 studies), whereas the remaining studies analyzed the impact of external interventions on the mental health of flood victims, either from preventive or post-disaster measures (3 studies). There is a very limited number of studies that analyze the impact of adaptation measures on the mental health of populations and individuals affected by floods, which complicates the generalizability of their findings. There is a need for public health policies and guidelines for the development of flood adaptation measures that adequately consider a social component that can be used to support the mental health of flood victims.
-
Traditional stormwater control measures are designed to handle system loadings induced by fixed-size storm events. However, climate change is predicted to alter the frequency and intensity of flooding events, stimulating the need to explore another more adaptive flooding solution like real-time control (RTC). This study assesses the performance of RTC to mitigate impacts of climate change on urban flooding resilience. A simulated, yet realistic, urban drainage system in Salt Lake City, Utah, USA, shows that RTC improves the flooding resilience by up to 17% under climatic rainfall changes. Compared with green stormwater infrastructure (GSI), RTC exhibits a lower resistibility, lower flooding failure level, and higher recovery rate in system performance curves. Results articulate that keeping RTC's performance consistent under ‘back-to-back’ storms requires a tradeoff between upstream dynamical operation and downstream flooding functionality loss. This research suggests that RTC provides a path towards smart and resilient stormwater management strategy.
-
Les inondations de 2017 et 2019 au Québec ont affecté respectivement 293 et 240 municipalités. Ces inondations ont généré une cascade d’évènements stressants (stresseurs primaires et secondaires) qui ont eu des effets sur la santé mentale de la population et retardé le processus de rétablissement des individus. Cette période de rétablissement peut s’échelonner sur plusieurs mois voire plusieurs années. Cette étude s’inscrit dans la spécificité de la recherche mixte mise de l’avant à travers trois stratégies de recherche, réalisées de façon séquentielle : 1) sondage populationnelle réalisé auprès de 680 personnes, 2) analyse de documents produits par les organisations participant au processus de rétablissement social des sinistrés, ou sur des analyses externes portant sur ces interventions de rétablissement et 3) entrevues semi-dirigées auprès de 15 propriétaires occupants ayant complété une demande d’indemnisation à la suite des inondations de 2019 et auprès de 11 professionnels et gestionnaires participant au processus de rétablissement social. Les entrevues semi-dirigées et les questionnaires complétés par les personnes sinistrées lors des inondations de 2019 démontrent que les principales sources de stress ayant des impacts sur la santé et le bien-être des répondants sont : 1) l’absence d’avertissement et la vitesse de la montée des eaux; 2) l’obligation de se relocaliser et la peur d’être victime de pillage; 3) le manque de solidarité et d’empathie de la part de certains employés du MSP; 4) la gestion des conflits familiaux; 5) la gestion de problèmes de santé nouveaux ou préexistants; 6) la complexité des demandes d’indemnisation; 7) la lourdeur et les délais des travaux de nettoyage ou de restauration; 8) les indemnités inférieures aux coûts engendrés par l’inondation; 9) les pertes matérielles subies, particulièrement ceux d’une valeur de plus de 50 000 $; et 10) la diminution anticipée de la valeur de sa résidence. À cela s’ajoute l’insatisfaction à l’égard du programme d’indemnisation du gouvernement du Québec (PGIAF) qui fait plus que doubler la prévalence des symptômes de stress post-traumatique. Les inondations entraînent également une perte de satisfaction ou de bien-être statistiquement significative. La valeur monétaire de cette perte de jouissance peut être exprimée en équivalent salaires. En moyenne, cette diminution du bien-être équivaut à une baisse de salaire de 60 000$ pour les individus ayant vécu une première inondation et à 100 000$ pour les individus ayant vécu de multiples inondations. Ces résultats suggèrent que les coûts indirects et intangibles représentent une part importante des dommages découlant des inondations. Ce projet de recherche vise également à analyser l’application du PGIAF et son influence sur les stresseurs vécus par les sinistrés dans le contexte de la pandémie de COVID-19. La principale recommandation de cette étude repose sur une analyse de documents, un sondage populationnel et des entrevues semi-dirigées. Ainsi, s’attaquer à la réduction de principaux stresseurs nécessite 1) d’améliorer la gouvernance du risque d’inondation, 2) d’intensifier la communication et le support aux sinistrés, et 3) de revoir les mécanismes d’indemnisation existants.
-
Climate change and more frequent severe storms have caused persistent flooding, storm surges, and erosion in the northeastern coastal region of the United States. These weather-related disasters have continued to generate negative environmental consequences across many communities. This study examined how coastal residents’ exposure to flood risk information and information seeking behavior were related to their threat appraisal, threat-coping efficacy, and participation in community action in the context of building social resilience. A random sample of residents of a coastal community in the Northeastern United States was selected to participate in an online survey (N = 302). Key study results suggested that while offline news exposure was weakly related to flood vulnerability perception, online news exposure and mobile app use were both weakly associated with flood-risk information seeking. As flood vulnerability perception was strongly connected to flood severity perception but weakly linked to lower self-efficacy beliefs, flood severity perception was weakly and moderately associated with response-efficacy beliefs and information seeking, respectively. Furthermore, self-efficacy beliefs, response efficacy beliefs, and flood-risk information seeking were each a weak or moderate predictor of collective efficacy beliefs. Lastly, flood risk information-seeking was a strong predictor and collective efficacy beliefs were a weak predictor of community action for flood-risk management. This study tested a conceptual model that integrated the constructs from risk communication, information seeking, and protection motivation theory. Based on the modeling results reflecting a set of first-time findings, theoretical and practical implications are discussed.
-
Abstract. In northern cold-temperate countries, a large portion of annual streamflow is produced by spring snowmelt, which often triggers floods. It is important to have spatial information about snow parameters such as snow water equivalent (SWE), which can be incorporated into hydrological models, making them more efficient tools for improved decision-making. The future Terrestrial Snow Mass Mission (TSMM) aims to provide high-resolution spatially distributed SWE information; thus, spatial SWE calibration should be considered along with conventional streamflow calibration for model optimization since the overall water balance is often a key objective in the hydrological modelling. The present research implements a unique spatial pattern metric in a multi-objective framework for calibration approach of hydrological models and attempts to determine whether raw SNODAS data can be utilized for hydrological model calibration. The SPAtial Efficiency (SPAEF) metric is explored for spatially calibrating SWE. The HYDROTEL hydrological model is applied to the Au Saumon River Watershed (∽1120 km2) in Eastern Canada using MSWEP precipitation data and ERA-5 land reanalysis temperature data as input to generate high-resolution SWE and streamflow. Different calibration experiments are performed combining Nash-Sutcliffe efficiency (NSE) for streamflow and root-mean-square error (RMSE), and SPAEF for SWE, using the Dynamically Dimensioned Search (DDS) and Pareto Archived Multi-Objective Optimization (PADDS) algorithms. Results of the study demonstrate that multi-objective calibration outperforms sequential calibration in terms of model performance. Traditional model calibration involving only streamflow produced slightly higher NSE values; however, the spatial distribution of SWE could not be adequately maintained. This study indicates that utilizing SPAEF for spatial calibration of snow parameters improved streamflow prediction compared to the conventional practice of using RMSE for calibration. SPAEF is further implied to be a more effective metric than RMSE for both sequential and multi-objective calibration. During validation, the calibration experiment incorporating multi-objective SPAEF exhibits enhanced performance in terms of NSE and Kling-Gupta Efficiency (KGE) compared to calibration experiment solely based on NSE. This observation supports the notion that incorporating SPAEF computed on raw SNODAS data within the calibration framework results in a more robust hydrological model.
-
Abstract Landslides involving sensitive clays are recurrent events in the world's northern regions and are especially notorious in eastern Canada. The two critical factors that separate sensitive clay landslides from traditional slope stability analysis are the highly brittle behavior in undrained conditions (strain-softening) characteristic of progressive or retrogressive failures and the large deformations associated with them. Conventional limit equilibrium analysis has numerous shortcomings in incorporating these characteristics when assessing landslides in sensitive clays. This paper presents an extensive literature review of the failure mechanics characteristics of landslides in sensitive clays and the existing constitutive models and numerical tools to analyze such slopes' stability and post-failure behavior. The advantages and shortcomings of the different techniques to incorporate strain-softening and large deformation in the numerical modeling of sensitive clay landslides are assessed. The literature review depicts that elastoviscoplastic soil models with non-linear strain-softening laws and rate effects represent the material behavior of sensitive clays. Though several numerical models have been proposed to analyze post-failure runouts, the amount of work performed in line with sensitive clay landslides is very scarce. That creates an urgent need to apply and further develop advanced numerical tools for better understanding and predicting these catastrophic events.
-
The magnitudes of dissolved organic carbon (DOC) exports from boreal peatlands to streams through lateral subsurface flow vary during the ice-free season. Peatland water table depth and the alternation of low and high flow in peat-draining streams are thought to drive this DOC export variability. However, calculation of the specific DOC exports from a peatland can be challenging considering the multiple potential DOC sources within the catchment. A calculation approach based on the hydrological connectivity between the peat and the stream could help to solve this issue, which is the approach used in the present research. This study took place from June 2018 to October 2019 in a boreal catchment in northeastern Canada, with 76.7 % of the catchment being covered by ombrotrophic peatland. The objectives were to (1) establish relationships between DOC exports from a headwater stream and the peatland hydrology; (2) quantify, at the catchment scale, the amount of DOC laterally exported to the draining stream; and (3) define the patterns of DOC mobilization during high-river-flow events. At the peatland headwater stream outlet, the DOC concentrations were monitored at a high frequency (hourly) using a fluorescent dissolved organic matter (fDOM) sensor, a proxy for DOC concentration. Hydrological variables, such as stream outlet discharge and peatland water table depth (WTD), were continuously monitored at hourly intervals for 2 years. Our results highlight the direct and delayed control of subsurface flow from peat to the stream and associated DOC exports. Rain events raised the peatland WTD, which increased hydrological connectivity between the peatland and the stream. This led to increased stream discharge (Q) and a delayed DOC concentration increase, typical of lateral subsurface flow. The magnitude of the WTD increase played a crucial role in influencing the quantity of DOC exported. Based on the observations that the peatland is the most important contributor to DOC exports at the catchment scale and that other DOC sources were negligible during high-flow periods, we propose a new approach to estimate the specific DOC exports attributable to the peatland by distinguishing between the surfaces used for calculation during high-flow and low-flow periods. In 2018–2019, 92.6 % of DOC was exported during flood events despite the fact that these flood events accounted for 59.1 % of the period. In 2019–2020, 93.8 % of DOC was exported during flood events, which represented 44.1 % of the period. Our analysis of individual flood events revealed three types of events and DOC mobilization patterns. The first type is characterized by high rainfall, leading to an important WTD increase that favours the connection between the peatland and the stream and leading to high DOC exports. The second is characterized by a large WTD increase succeeding a previous event that had depleted DOC available to be transferred to the stream, leading to low DOC exports. The third type corresponds to low rainfall events with an insufficient WTD increase to reconnect the peatland and the stream, leading to low DOC exports. Our results suggest that DOC exports are sensitive to hydroclimatic conditions; moreover, flood events, changes in rainfall regime, ice-free season duration, and porewater temperature may affect the exported DOC and, consequently, partially offset the net carbon sequestration potential of peatlands.
-
Research in hydrological sciences is constantly evolving to provide adequate answers to address various water-related issues. Methodological approaches inspired by mathematical and physical sciences have shaped hydrological sciences from its inceptions to the present day. Nowadays, as a better understanding of the social consequences of extreme meteorological events and of the population’s ability to adapt to these becomes increasingly necessary, hydrological sciences have begun to integrate knowledge from social sciences. Such knowledge allows for the study of complex social-ecological realities surrounding hydrological phenomena, such as citizens’ perception of water resources, as well as individual and collective behaviors related to water management. Using a mixed methods approach to combine quantitative and qualitative approaches has thus become necessary to understand the complexity of hydrological phenomena and propose adequate solutions for their management. In this paper, we detail how mixed methods can be used to research flood hydrology and low-flow conditions, as well as in the management of these hydrological extremes, through the analysis of case studies. We frame our analysis within the three paradigms (positivism, post-positivism, and constructivism) and four research designs (triangulation, complementary, explanatory, and exploratory) that guide research in hydrology. We show that mixed methods can notably contribute to the densification of data on extreme flood events to help reduce forecasting uncertainties, to the production of knowledge on low-flow hydrological states that are insufficiently documented, and to improving participatory decision making in water management and in handling extreme hydrological events.
-
Heavy rainfall events in the warm season (May–September) over the Tibetan Plateau (TP) region and its downstream areas are often closely related to eastward-propagating Tibetan Plateau Vortices (TPVs). Hence, improving the prediction of TPVs and their associated convective activity is of paramount importance, given the significant potential impacts they can have on densely populated downstream regions, including but not limited to flooding and damages. In this study, a typical long-lived TPV that occurred in July 2008 was used for the first time to explore the benefit of assimilating satellite all-sky infrared radiances on the cloud and precipitation prediction of the TPV-induced eastward-propagating mesoscale convective system (MCS). The all-sky infrared radiances from the water vapor (WV) channel of the geostationary Meteosat-7 and other conventional observations were assimilated into a 4-km grid spacing regional model using the ensemble Kalman filter. The results revealed that the all-sky infrared data assimilation improved the cloud, precipitation, dynamical, and thermodynamical analyses as well as 0–12-hr deterministic and ensemble forecasts. Compared with the experiment in which the all-sky infrared radiances were not assimilated (non-radiance experiment), the experiment with assimilated all-sky infrared radiances yielded clearly improved initial wind and cloud fields, 1–12-hr cloud forecasts, and 1–6-hr precipitation forecasts. This study indicates that assimilation of all-sky satellite radiances has the potential for improving the operational cloud and precipitation forecasts over the TP and its downstream areas.
-
Abstract Interdisciplinary research is considered a source of innovativeness and creativity, serving as a key mechanism for creating recombination necessary for the evolution of science systems. The aim of this study is to quantitatively establish the connection between interdisciplinary research and the research fronts that have recently emerged in civil engineering. The degree of interdisciplinarity of the research fronts was measured by developing metrics from bibliographic analyses. As indicated by the consistent increase in the metrics of interdisciplinarity over time, research fronts tend to emerge in studies with increasing diversity in the disciplines involved. The active disciplines involved in the fronts vary over time. The most active disciplines are no longer fundamental but those associated with energy, environment, and sustainable development, focusing on solutions to climate change and integrating intelligence technologies.
-
The coast is a complex environment that comprises seawater, underwater, soil, atmosphere, and other environmental factors. Traditional and new pollutants, represented by oil spills and microplastic (MPs), persist in posing a constant threat to the ecosystems and social-economic features of coastal regions. Besides, the shoreline is exposed to various environment conditions, which may significantly affect the behaviors of pollutants on beaches. An in-depth understanding of the occurrence and fate of pollutants in coastal areas is a prerequisite for the development of sound prevention and remediation strategies. Firstly, the physicochemical behavior of crude oil on various types of shorelines under different environmental conditions were reviewed. The penetration, remobilization, and retention of stranded oil on shorelines are affected by the beach topography and the natural environment. The attenuation and fate of oil on shorelines from laboratory and field experiments were discussed. In addition, the source, type, distribution, and factors of MPs in the coastal areas were summarized. What is more, the occurrence and environmental risk of emerging plastics waste—personal protective equipment (PPE)—in the coastal environment during and pandemic were discussed. Then, the role of natural nanobubbles (NBs) in the fate and transport of spilled oil were investigated through laboratory experiments and model simulations. NBs significantly increased the concentration of dissolved oxygen as well as changed the pH, zeta potential, and surface tension of the water. With the assistance of external energy, the bulk NBs enhanced the efficiency in oil detachment from the surface of the substrate. At the same time, the surface NBs on the substrate obstructed the downward transport of oil colloids. Considering the behavior between the NBs in two different phases and the oil droplets, the oil droplets tended to bind to the NBs. Next, the behavior and movement of various MPs in the presence of bulk NBs was explored. In the presence of NBs, the binding of MPs and NBs resulted in an increase in the measured average particle size and concentration. The velocity of motion of MPs driven by NBs varies under different salinity conditions. The increase in ionic strength reduced the energy barrier between particles and promoted their aggregation. Thus, the binding of NBs and MPs became more stable, which in turn affected the movement of MPs in the water. Polyethylene (PE1) with small particle size was mainly affected by Brownian motion and its rising was limited, therefore polyethylene (PE2) with large particle size rose faster than PE1 in suspension, especially in the presence of NBs. The effect of nanobubbles on the mobilization of MPs in shorelines subject to seawater infiltration was further studied. The motion of MPs under continuous and transient conditions, as well as the upward transport induced with flood were considered. Salinity altered the energy barriers between particles, which in turn affected the movement of MPs within the matrix. In addition, hydrophilic MPs were more likely to infiltrate within the substrate and had different movement patterns under both continuous and transient conditions. The motion of the MPs within the substrate varied with flow rate, and NBs limited the vertical movement of MPs in the tidal zone. It was also observed that NBs adsorbed readily onto substrates, altering the surface properties of substrates, particularly their ability to attach and detach from other substances. Finally, the changing characteristics and environmental behaviors of PPE wastes when exposed to the shoreline environment were examined. The transformation of chain structure and chemical composition of masks and gloves as well as the decreased mechanical strength after UV weathering were observed. In addition, the physical abrasion caused by sand further exacerbated the release of MPs and leachable hazardous contaminates from masks and gloves. In conclusion, the coastal zone is threatened by various pollutants, including traditional pollutants (like the oil spill) and emerging pollutants (like MPs). Due to the complexity of the coastal zone, the occurrence, transport and fate of pollutants can be controlled by many factors, and some factors that are ignored before can also alter the environmental behavior of pollutants in the coastal zone. Natural NBs can change the properties of the water environment and affect the surface properties of the substrate. Bulk NBs contribute to the oil detachment from the sand surface, and surface nanobubbles in the substrate obstruct the downward transport of oil colloids. The behavior and mobilization of MPs in the coastal `zone are subject to mutual forces between the substrate, MPs, NBs, and other factors. Coastal zones are not only the main receptor of pollutants from oceans and lands but also play a key role in their fate and transport.
-
Natural calamities like floods and droughts pose a significant threat to humanity, impacting millions of people each year and incurring substantial economic losses to society. In response to this challenge, this thesis focuses on developing advanced machine learning techniques to improve water height prediction accuracy that can aid municipalities in effective flood mitigation. The primary objective of this study is to evaluate an innovative architecture that leverages Long Short Term Networks - neural networks to predict water height accurately in three different environmental scenarios, i.e., frazil, droughts and floods due to snow spring melt. A distinguishing feature of our approach is the incorporation of meteorological forecast as an input parameter into the prediction model. By modeling the intricate relationships between water level data, historical meteorological data and meteorological forecasts, we seek to evaluate the impact of meteorological forecasts and if any inaccuracies could impact water-level prediction. We compare the outcomes obtained by incorporating next-hour, next-day and next-week meteorological data into our novel LSTM model. Our results indicate a comprehensive comparison of the usage of various parameters as input and our findings suggest that accurate weather forecasts are crucial in achieving reliable water height predictions. Additionally, this study focuses on the utilization of IoT sensor data in combination with ML models to enhance the effectiveness of flood prediction and management. We present an online machine learning approach that performs online training of the model using real-time data from IoT sensors. The integration of live sensor data provides a dynamic and adaptive system that demonstrates superior predictive capabilities compared to traditional static models. By adopting these advanced techniques, we can mitigate the adverse impacts of natural catastrophes and work towards building more resilient and disaster-resistant communities.
-
L’estimation du débit en rivières est un paramètre clé pour la gestion des ressources hydriques, la prévention des risques liés aux inondations et la planification des équipements hydroélectriques. Lorsque le débit d’eau est très élevé lors d'évènements extrêmes, les méthodes de jaugeage traditionnelles ne peuvent pas être utilisées. De plus, les stations du réseau hydrométrique sont généralement éparses et leur répartition spatiale n’est pas optimale. Par conséquent, de nombreuses sections de rivières ne peuvent être suivies par des mesures et observations du débit. Pour ces raisons, pendant la dernière décennie, les capteurs satellitaires ont été considérés comme une source d’observation complémentaire aux observations traditionnelles du niveau d’eau et du débit en rivières. L’utilisation d’une telle approche a fourni un moyen de maintenir et d’étendre le réseau d'observation hydrométrique. L’approche avec télédétection permet d’estimer le débit à partir des courbes de tarage qui met en relation le débit instantané (Q) et la géométrie d’une section transversale du chenal (la largeur ou la profondeur effective de la surface d’eau). En revanche, cette méthode est associée à des limitations, notamment, sa dépendance aux courbes de tarage. En effet, en raison de leurs natures empiriques, les courbes de tarage sont limitées à des sections spécifiques et ne peuvent être appliquées dans d’autres rivières. Récemment, des techniques d’apprentissage profond ont été appliquées avec succès dans de nombreux domaines, y compris en hydrologie. Dans le présent travail, l’approche d’apprentissage profond a été choisie, en particulier les réseaux de neurones convolutifs (CNN), pour estimer le débit en rivière. L’objectif principal de ce travail est de développer une approche d’estimation du débit en rivières à partir de l’imagerie RADARSAT 1&2 à l’aide de l’apprentissage profond. La zone d’étude se trouve dans l’ecozone du bouclier boréal à l’Est du Canada. Au total, 39 sites hydrographiques ont fait l’objet de cette étude. Dans le présent travail, une nouvelle architecture de CNN a été a été proposée, elle s'adapte aux données utilisées et permet d’estimer le débit en rivière instantané. Ce modèle donne un résultat du coefficient de détermination (R²) et de Nash-Sutcliffe égale à 0.91, le résultat d’erreur quadratique moyenne égale à 33 m³ /s. Cela démontre que le modèle CNN donne une solution appropriée aux problèmes d’estimation du débit avec des capteurs satellites sans intervention humaine. <br /><br />Estimating river flow is a key parameter for effective water resources management, flood risk prevention and hydroelectric facilities planning. In cases of very high flow of water or extreme events, traditional gauging methods cannot be reliable. In addition, hydrometric network stations are often sparse and their spatial distribution is not optimal. Therefore, many river sections cannot be monitored using traditional flow measurements and observations. For these reasons, satellite sensors are considered as a complementary observation source to traditional water level and flow observations in the last decades. The use of this kind of approach has provided a way to maintain and expand the hydrometric observation network. Remote sensing data can be used to estimate flow from rating curves that relate the instantaneous flow (Q) to the geometry of a channel cross-section (the effective width or depth of the water surface). On the other hand, remote sensing is also associated with limitations, notably its dependence on the rating curves. Indeed, due to their empirical nature, rating curves are limited to specific sections and cannot be applied in other rivers. Recently, deep learning techniques have been successfully applied in many fields, including hydrology. In the present work, the deep learning approach has been chosen, in particular convolutional neural networks (CNN), to estimate river flow. The main objective of this work is to develop an approach to estimate river flow from RADARSAT 1&2 imagery using deep learning. In this study, 39 hydrographic sites of the Boreal Shield ecozone in Eastern Canada were considered. A new CNN architecture was developed to provide a straightforward estimation of the instantaneous river flow rate. The achieved results demonstrated a coefficient of determination (R²) and Nash-Sutcliffe values of 0.91, and a root mean square error of 33m³ /s. This indicates the effectiveness of CNN in automatic flow estimation with satellite sensors.
-
Streamflow forecasting is important for managing water resources in sectors like agriculture, hydropower, drought management, and urban flood prevention planning. Our study examines short and long lead-times to create a framework for streamflow forecasting that can benefit water resource management and related sectors. To improve streamflow forecasts for up to ten days of lead-time, the study first focuses on improving initial conditions using an ensemble Kalman filter as a data assimilation method. The goal is to regulate the hyperparameters of the ensemble Kalman filter for each season to produce more accurate forecasts. A sensitivity analysis is conducted to identify the best hyperparameter sets for each season, including uncertainty in temperature, precipitation, observed streamflow, and the water content of three state variables - vadose zone, saturated zone, and snowpack - from the CEQUEAU model. Results indicate that improving initial conditions with the ensemble Kalman filter produces more skillful forecasts until a 6-day leadtime. Temperature uncertainty is particularly sensitive and varies across seasons. The vadose zone state variable was identified as the most important and sensitive state variable, and updating all state variables systematically may not be necessary for improving forecast skill. Recent machine learning advances are improving short-term streamflow forecasting. One such method is the Long Short-Term Memory (LSTM) model. In general, neural networks learn from regression as relationships exist between input-output. However, LSTM models have a feature named ‘forget gate’, which enables them to learn the relationship between inputs (e.g., temperature and precipitation) and output (streamflow), and also to capture temporal dependencies in the data. The study aimed to compare the performance of the Long ShortTerm Memory (LSTM) model with data assimilation-based and process-based hydrological models in short-term streamflow forecasting. All three models were tested using the same ensemble weather forecasts. The LSTM model demonstrated good performance in forecasting streamflow, with a Kling-Gupta efficiency (KGE) greater than 0.88 for 9 lead-times. The LSTM model did not incorporate data assimilation, but it benefited from observed streamflow until the last day before the forecast. This is because the LSTM model learned and incorporated knowledge from the previous days while issuing forecasts, similar to how data assimilation updates initial conditions. The study results also showed that the LSTM model had better performance up to day 6 of lead-time compared to the data assimilation-based models. However, training the LSTM model separately for each lead-time is a time-consuming process and is a disadvantage compared to the data assimilation-based methods. Nonetheless, the study demonstrated the potential of machine learning techniques in improving streamflow forecasting. The forecasting of streamflow for long lead-times such as a month usually involves the use of historical meteorological data to create probable future scenarios, as meteorological forecasts become unreliable beyond this lead-time. In this study, we proposed a novel method for streamflow forecasting based on ensemble streamflow forecasting (ESP) filtering, using a Genetic Algorithm (GA) to filter forecast scenarios. This method quantifies the potential of historical data for each basin. This potential could be utilized to enhance the accuracy of streamflow forecasts. We sorted the selected and unselected scenarios to find out the common features between them, but the results did not help distinguish between the two groups. Nonetheless, the GA method can be used as a benchmark for future studies to improve longterm streamflow forecasting. This method can also be used to compare different forecast methods based on the potential shown by the GA method for a specific size of ESP members. For instance, if a method uses large-scale climate signals to filter ESP members, the forecast skill result could be compared with the potential of historical data for that particular size of ESP members.
-
Flooding, a major natural calamity, severely threatens communities and infrastructures in areas susceptible to floods. Consequently, implementing an Internet of Things (IoT)-based flood monitoring system becomes crucial. Existing flood monitoring systems lack a comprehensive and scalable IoT platform to collect real-time data from diverse sensors efficiently, visualize flood information, and provide accurate water level forecasts. This thesis proposes a complete system designed to address the challenges associated with efficient data collection and flood monitoring from diverse IoT sensors. Our proposition involves creating and deploying a centralized system known as HYDROSIGHT, which facilitates the real-time gathering, monitoring, and visualization of flooding-related sensor data. HYDROSIGHT system also provides a log monitoring feature for effective debugging and troubleshooting. The IoT environment for flood monitoring and prediction system was designed to promote sustainability and autonomy by preferring sensors with minimal footprints and compatibility with solar panels. The system architecture leverages a 4G network for seamless data transmission. To validate the practical applicability of the proposed design,HYDROSIGHT system was tested at two municipalities of Quebec, namely Terrebonne, and Lac-Supérieur. In addition, the platform was also deployed at the Ericsson facility in Montreal to test the 5G capabilities. The deployment in these locations allowed us to evaluate the performance and effectiveness of the HYDROSIGHT system in a real flood monitoring environment. In addition to implementing the IoT testbed, a preliminary machine learning tool was developed on water level forecasting. In this experiment, we opted for an online machine-learning approach, recognizing the significance of real-time updates and low computational resources of IoT devices. Leveraging the constantly updating data from HYDROSIGHT, we trained and tested our online machine-learning model, enhancing its forecasting capabilities. We conducted a comparative analysis to understand the advantages of online machine learning over traditional batch learning. This analysis involved examining the water level forecasting results obtained from both methods using time series data from the HYDROSIGHT system deployed at Lac-Supérieur in Quebec.
-
Les inondations sont une préoccupation majeure avec un potentiel de risques importants pour la sécurité publique ainsi qu'un impact économique et social négatif. Pour développer un modèle hydrodynamique permettant de cartographier et d'évaluer les risques d'inondation, un modèle d'élévation est un élément essentiel. La grande disponibilité de données de télédétection multisources facilite la création d'un modèle numérique d'élévation topo-bathymétrique (TBDEM). Cependant, il peut être très difficile de créer un modèle d'élévation à haute résolution homogène adapté à la cartographie des inondations en raison des divergences entre les données topographiques et bathymétriques causées par des changements temporels, des systèmes de référence horizontaux et verticaux différents, et des différences significatives en termes de résolution, incertitude et zone de couverture. Cette étude présente une méthodologie qui élargit les études précédentes axées sur la cartographie côtière à basse résolution en résolvant les différences spatiales et temporelles des jeux de données multisources tout en maintenant l'intégrité de la morphologie des berges et de l'environnement proche du rivage. Ceci est réalisé en appliquant une nouvelle méthodologie de fusion qui est mieux adaptée aux sources de données en jeu. Une méthode de moindre coût est appliquée aux données topographiques alors qu'une méthode de feathering est appliquée aux données bathymétriques. Pour ce qui est de la zone intermédiaire à l'interface de la terre et de l'eau, des transects sont utilisés pour interpoler entre les données manquantes afin de garantir l'intégrité du littoral. Enfin, une méthode de krigeage empirique bayésien appliqué à l'ensemble des données permet de produire une surface sans discontinuité accompagnée d'une surface d'erreur pour analyser l'incertitude en chaque point du modèle. Des données LiDAR aéroporté ainsi que des données de bathymétrie multifaisceau de la section supérieure du fleuve Saint-Laurent au Québec, Canada ont été combinées en utilisant la méthodologie proposée. Le TBDEM produit dans cette étude constitue une meilleure représentation que les modèles précédents et minimise l'erreur dans les données. La capacité de ce TBDEM à être plus performant que les modèles précédents dans les simulations hydrodynamiques sera testée dans des études futures en utilisant des événements de crue enregistrés précédemment.
-
Au Québec, les conditions printanières extraordinaires de 2017 et 2019 ont incité le gouvernement provincial à commander une mise à jour des cartes des zones inondables. La plupart des cartes existantes ne reflètent pas adéquatement l’aménagement actuel du territoire, ni l’aléa associé. Généralement, pour la cartographie, les modèles hydrodynamiques tel que HEC-RAS sont utilisés, mais ces outils nécessitent une expertise significative, des données hydrométriques et des relevés bathymétriques à haute résolution. Étant donnée la nécessité de mettre à jour ces cartes tout en réduisant les coûts financiers associés, des méthodes conceptuelles simplifiées ont été développées. Ces approches, y compris l’approche géomatique HAND (Height above the nearest drainage), qui reposent uniquement sur un modèle numérique d’élévation (MNE), sont de plus en plus utilisées. HAND permet de calculer la hauteur d’eau nécessaire pour inonder chaque pixel du MNE selon la différence entre son élévation et celle du pixel du cours d’eau dans lequel il se déverse. Les informations sur la géométrie hydraulique dérivées par HAND ainsi que l’application de l’équation de Manning permettent la construction d’une courbe de tarage synthétique (CTS) pour chaque tronçon de rivière homogène. Dans la littérature, cette méthode a été appliquée pour établir une cartographie de la zone inondable de première instance de grands fleuves aux États-Unis avec un taux de correspondance de 90% par rapport à l’utilisation de HEC-RAS. Elle n’a toutefois pas été appliquée sur de petits bassins versants, car ceux-ci engendrent des défis méthodologiques substantiels. Ce projet s’attaque à ces défis sur deux bassins versants Québécois, ceux des rivières à la Raquette et Delisle. Les conditions frontières des modèles sont dérivées d’un traitement statistique empirique des séries de débits simulés avec le modèle hydrologique HYDROTEL. Étant donnée l’absence de stations météorologiques sur le territoire à l’étude, des chroniques du système Canadien d’Analyse de la précipitation (CaPA) ont été utilisées pour cette modélisation hydrologique. Les résultats de ce projet pointent vers des performances satisfaisantes de l’approche géomatique HAND-CTS en comparaison avec le modèle hydrodynamique HEC-RAS (1D/2D et 2D au complet), avec des taux de correspondance entre les étendues des inondations supérieurs à 60 % pour les bassins versants de Delisle et à la Raquette. Les comparaisons étaient effectuées sur une gamme de débit allant d’un débit de période de retour de 2 ans jusqu’à un débit de plus de 350 ans. On notera que l’application sur la rivière à la Raquette a été développée dans les règles de l’art, incluant un processus de calage développé dans le cadre d’un projet de maitrise en sciences de l’eau connexe à ce mémoire, relativement à la longueur du tronçon, le calage vertical de la CTS en considérant la hauteur d’eau présente dans le cours d’eau lors du relevé LiDAR et sa précision verticale. Les résultats ont montré que le coefficient de précision globale le plus bas était de 98 % pour un débit de 350 ans, avec une précision de plus que 99 % pour les autres périodes de retour, ce qui représente une très bonne performance du modèle. Et par ailleurs, le coefficient de Kappa conditionnel humide variait entre 58 % et 28 %. Alors, que pour la rivière Delisle, l’application se veut naïve, c’est-à-dire sans calage préalable de la méthode HANDCTS. La précision globale a varié entre 83 % et 96 %, ce qui est considéré comme "très approprié" et une variation du coefficient Kappa conditionnel humide de 35,2 à 64,3 %. Alors que pour une différence d’élévations d'eau entre les élévations de référence et simulées, la performance était quantifiée par un RMSE qui variait pour les périodes de retour de 100 ans et de 350 ans respectivement de 4,5 m et de 7,1 m. Enfin, la distribution spatiale des différences d’élévations montre une distribution gaussienne avec une moyenne qui est à peu près égale à 0 où la plupart des erreurs se situent entre -0,34 m et 1,1 m La cartographie des zones inondables dérivée de HAND-CTS présente encore certains défis associés notamment à la présence d’infrastructures urbaines complexes (ex. : ponceaux, ponts et seuils) dont l’influence hydraulique n’est pas considérée. Dans le contexte où l’ensemble du Québec (529 000 km²) dispose d’une couverture LiDAR, les résultats de ce mémoire permettront de mieux comprendre les sources d’incertitude associées à la méthode HAND-CTS tout en démontrant son potentiel pour les bassins versants dépourvus de données bathymétriques et hydrométéorologiques. <br /><br />The 2017 and 2019 extraordinary spring conditions prompted the Quebec government to update flood risk maps, as most of them do not adequately reflect current land use and associated hazard. Generally, hydrodynamic models such as HEC-RAS are used for flood mapping, but they require significant expertise, hydrometric data, and high-resolution bathymetric surveys. Given the need to update these maps while reducing the associated financial costs, simplified conceptual methods have been developed over the last decade. These methods are increasingly used, including HAND (height above the nearest drainage), which relies on a Digital Elevation Model (DEM) to delineate the inundation area given the water height in a river segment. Furthermore, the river geometry derived from HAND data and the application of Manning’s equation allow for the construction of a synthetic rating curve (SRC) for each homogeneous river segment. In the scientific literature, this framework has been applied to produce first-instance floodplain mapping of large rivers. For example, in the Continental United States 90% match rates were achieved when compared to the use of HEC-RAS. However, this framework has not been validated for small watersheds, as substantial methodological challenges are anticipated. This project addresses these underlying challenges in two Quebec watersheds, the à la Raquette and Delisle watersheds. The boundary conditions of the HECRAS models were derived from an empirical statistical treatment of flow time series simulated by HYDROTEL, a hydrological model, using Canadian Precipitation Analysis Product (CaPA) time series. The results of this project point towards satisfactory performances, with match rates greater than 60 % for both watersheds. It should be noted that the application on the Delisle River is naive, that is without prior calibration of the HAND-SRC method. The overall accuracy ranged from 83.4 % to 96.2 % while the water surface elevation difference was quantified by an RMSE that was for the 100-year and 350-year return periods of 4.5 m and 7.1 m respectively and where most errors are between -0.34 m and 1.1 m representing a very good model comparing to similar studies. For à la Raquette, the application showed an overall accuracy coefficient of 98 % for a 350-year flow, with an accuracy of over 99 % for other return periods. The mapping of flood risk areas using HAND-SRC still faces certain challenges, notably the presence of complex urban infrastructures (e.g., culverts, bridges, and weirs) whose hydraulic influences are not considered by this geomatic approach. Given that most of Quebec (529,000 km²) topography has been digitized using LiDAR data, the results conveyed in this MSc thesis will allow for a better understanding of the sources of uncertainty associated with the application of the HAND-SRC method while demonstrating its potential for watersheds lacking hydrometeorological and high-resolution bathymetric data.