Votre recherche
Résultats 5 ressources
-
Several statistical methods were used to analyze the spatio-temporal variability of daily minimum extreme flows (DMEF) in 17 watersheds—divided into three homogenous hydroclimatic regions of southern Quebec—during the transitional seasons (spring and fall), during the 1930–2019 period. Regarding spatial variability, there was a clear difference between the south and north shores of the St. Lawrence River, south of 47° N. DMEF were lower in the more agricultural watersheds on the south shore during transitional seasons compared to those on the north shore. A correlation analysis showed that this difference in flows was mainly due to more agricultural areas ((larger area (>20%) on the south than on the north shore (<5%)). An analysis of the long-term trend of these flows showed that the DMEF of south-shore rivers have increased significantly since the 1960s, during the fall (October to December), due to an increase in rainfall and a reduction in cultivated land, which increased the infiltration in the region. Although there was little difference between the two shores in the spring (April to June), we observed a decrease in minimum extreme flows in half (50%) of the south-shore rivers located north of 47° N.
-
Abstract This study explores the potential impacts of climate change on soil erosion in an agricultural catchment in eastern Canada. The Modified Universal Soil Loss Equation (MUSLE) was used to calculate the sediment yields from the Acadie River Catchment for the historical 1996–2019 period. The runoff variables of the MUSLE were obtained from a physically based hydrological model previously built and validated for the catchment. Then, the hydrological model was perturbed using climate change projections and used to assess the climate sensitivity of the sediment yield. Two runoff types representing possible modes of soil erosion were considered. While type A represents a baseline case in which soil erosion occurs due to surface runoff only, type B is more realistic since it assumed that tile drains also contribute to sediment export, but with a varying efficiency throughout the year. The calibration and validation of the tile efficiency factors against measurements in 2009–2015 for type B suggest that tile drains export the sediments with an efficiency of 20% and 50% in freezing and non-freezing conditions, respectively. Results indicate that tile drains account for 39% of the total annual sediment yield in the present climate. The timing of highest soil erosion shifts from spring to winter in response to warming and wetting, which can be explained by increasing winter runoff caused by shifting snowmelt timing towards winter, a greater number of mid-winter melt events as well as increasing rainfall fractions. The large uncertainties in precipitation projections cascade down to the erosion uncertainties in the more realistic type B, with annual sediment yield increasing or decreasing according to the precipitation uncertainty in a given climate change scenario. This study demonstrates the benefit of conservation and no-till pratices, which could reduce the annual sediment yields by 20% and 60%, respectively, under any given climate change scenario.
-
Anthropogenic climate change is currently driving environmental transformation on a scale and at a pace that exceeds historical records. This represents an undeniably serious challenge to existing social, political, and economic systems. Humans have successfully faced similar challenges in the past, however. The archaeological record and Earth archives offer rare opportunities to observe the complex interaction between environmental and human systems under different climate regimes and at different spatial and temporal scales. The archaeology of climate change offers opportunities to identify the factors that promoted human resilience in the past and apply the knowledge gained to the present, contributing a much-needed, long-term perspective to climate research. One of the strengths of the archaeological record is the cultural diversity it encompasses, which offers alternatives to the solutions proposed from within the Western agro-industrial complex, which might not be viable cross-culturally. While contemporary climate discourse focuses on the importance of biodiversity, we highlight the importance of cultural diversity as a source of resilience.
-
Abstract The exposure of urban populations to flooding is highly heterogeneous, with the negative impacts of flooding experienced disproportionately by the poor. In developing countries experiencing rapid urbanization and population growth a key distinction in the urban landscape is between planned development and unplanned, informal development, which often occurs on marginal, flood‐prone land. Flood risk management in the context of informality is challenging, and may exacerbate existing social inequalities and entrench poverty. Here, we adapt an existing socio‐hydrological model of human‐flood interactions to account for a stratified urban society consisting of planned and informal settlements. In the first instance, we use the model to construct four system archetypes based on idealized scenarios of risk reduction and disaster recovery. We then perform a sensitivity analysis to examine the relative importance of the differential values of vulnerability, risk‐aversion, and flood awareness in determining the relationship between flood risk management and social inequality. The model results suggest that reducing the vulnerability of informal communities to flooding plays an important role in reducing social inequality and enabling sustainable economic growth, even when the exposure to the flood hazard remains high. Conversely, our model shows that increasing risk aversion may accelerate the decline of informal communities by suppressing economic growth. On this basis, we argue for urban flood risk management which is rooted in pro‐poor urban governance and planning agendas which recognize the legitimacy and permanence of informal communities in cities. , Key Points The distribution of flood risk in urban areas is uneven, with the negative impacts experienced disproportionately by the urban poor Our model shows that reducing the vulnerability of informal residents to flooding can reduce inequality, even when their exposure is high Based on the model results, we argue that urban flood risk management should be rooted in pro‐poor urban governance and planning agendas