Votre recherche
Résultats 7 ressources
-
Mise en patrimoine des crues et des inondations Sous la direction de Alexis Metzger et Jamie Linton Collection : Géographie et cultures
-
Abstract Flooding remains a major problem for the United States, causing numerous deaths and damaging countless properties. To reduce the impact of flooding on communities, the U.S. government established the Community Rating System (CRS) in 1990 to reduce flood damages by incentivizing communities to engage in flood risk management initiatives that surpass those required by the National Flood Insurance Program. In return, communities enjoy discounted flood insurance premiums. Despite the fact that the CRS raises concerns about the potential for unevenly distributed impacts across different income groups, no study has examined the equity implications of the CRS. This study thus investigates the possibility of unintended consequences of the CRS by answering the question: What is the effect of the CRS on poverty and income inequality? Understanding the impacts of the CRS on poverty and income inequality is useful in fully assessing the unintended consequences of the CRS. The study estimates four fixed‐effects regression models using a panel data set of neighborhood‐level observations from 1970 to 2010. The results indicate that median incomes are lower in CRS communities, but rise in floodplains. Also, the CRS attracts poor residents, but relocates them away from floodplains. Additionally, the CRS attracts top earners, including in floodplains. Finally, the CRS encourages income inequality, but discourages income inequality in floodplains. A better understanding of these unintended consequences of the CRS on poverty and income inequality can help to improve the design and performance of the CRS and, ultimately, increase community resilience to flood disasters.
-
Phosphorus (P) mobilization in agricultural landscapes is regulated by both hydrologic (transport) and biogeochemical (supply) processes interacting within soils; however, the dominance of these controls can vary spatially and temporally. In this study, we analyzed a 5‐yr dataset of stormflow events across nine agricultural fields in the lower Great Lakes region of Ontario, Canada, to determine if edge‐of‐field surface runoff and tile drainage losses (total and dissolved reactive P) were limited by transport mechanisms or P supply. Field sites ranged from clay loam, silt loam, to sandy loam textures. Findings indicate that biogeochemical processes (P supply) were more important for tile drain P loading patterns (i.e., variable flow‐weighted mean concentrations ([ C f ]) across a range of flow regimes) relative to surface runoff, which trended toward a more chemostatic or transport‐limited response. At two sites with the same soil texture, higher tile [ C f ] and greater transport limitations were apparent at the site with higher soil available P (STP); however, STP did not significantly correlate with tile [ C f ] or P loading patterns across the nine sites. This may reflect that the fields were all within a narrow STP range and were not elevated in STP concentrations (Olsen‐P, ≤25 mg kg −1 ). For the study sites where STP was maintained at reasonable concentrations, hydrology was less of a driving factor for tile P loadings, and thus management strategies that limit P supply may be an effective way to reduce P losses from fields (e.g., timing of fertilizer application). Core Ideas We used metrics to evaluate controls on edge‐of‐field phosphorus losses. We examined a 5‐yr database of stormflow events (all seasons, including winter). Tile P runoff trended toward being more supply limited than surface runoff.
-
Hydrological responses in cold regions are often complex and variable (both spatially and temporally) due to the complex and multiple interactions between the hydrological processes at play. Thus, there is a need to better understand and represent cold region hydrological processes within hydrological models. In this study, a physicallybased hydrological model has been developed using the Cold Regions Hydrological Model (CRHM) platform for the L’Acadie River Catchment in southern Quebec (Canada). Almost 70 % of the catchment is occupied by agricultural fields, being representative of the intensive farming landscape of the southern St-Lawrence lowlands, while the rest is mostly forested. The physical processes including blowing snow, snow interception in canopies, sublimation and snowmelt were simulated over 35 years using the CRHM platform. Hydrologic response units (HRUs), the smallest simulation spatial unit within the catchment, were derived based on the combination of land use/cover and vegetation types. Over the simulation period, considerable spatial variability was detected between agricultural and forested sites. Snow accumulation and associated snow water equivalent (SWE) were found to be higher in forested sites than agricultural sites, which can be explained by blowing snow transport from agricultural sites to the forested sites where aerodynamic roughness is greater. Higher rates of blowing snow sublimation were detected over the agricultural sites compared to snow intercepted in the forest canopies. This can be explained by the fact that there is a great amount of blowing snow over the agricultural sites, and thus available suspended snow for sublimation, while over the forested sites the snow is more firmly retained by the canopies and thus there is less blowing snow and consequently less blowing snow sublimation. In addition, although snow cover duration shows variation over the simulation period, the snow generally lasts longer in forested fields than in agricultural fields. Our findings indicating more snow in forested fields than agricultural (open) fields are contrary to the usual notion that there is less snow accumulation on forest ground due to the high rates of canopy sublimation. However, this is true for the landscapes dominated by forests, while our study area is dominated by agricultural fields, so snow erosion of agricultural fields and snow deposition in forested fields seem to compensate canopy losses. Taken together, it is shown that land use exerts a critical control on snow distributions in this type of landscape, and perhaps on possible implications for future snow hydrology of the catchment.