Votre recherche
Résultats 13 ressources
-
Redlining occurs when institutions decline to make mortgage loans in specific areas. The practice originated in the 1930s, when federal agencies encouraged lenders to rate neighbourhoods for mortgage risk. Since the 1960s, especially in the US, it has been associated with disinvestment, racial discrimination and neighbourhood decline. It has always been viewed as a feature of the inner city. Historical evidence indicates that across Canada the first areas to be redlined were the less-desirable suburbs. Land registry and property assessment data establish the emergent patterns in Hamilton, Ontario. Between 1931 and 1951, institutional lending became a social norm first on new dwellings in suburbs. Individual lenders, previously dominant, were relegated to older inner-city properties or cheaper dwellings in less-desirable suburbs. In 1931, there were only minor geographical variations in the incidence of mortgage finance, and specifically of institutional financing, across the urban area. By 1951, lending institutions, led by insurance companies, were discriminating sharply in favour of the West End, the Mountain and Bartonville, and against those parts of the East End that were unserviced or close to lakefront industry. The evidence for Hamilton confirms that in Canada redlining originated in the suburbs. The same may also be true for US metropolitan areas, although the institutional context was different and relevant data are lacking.
-
As Hurricane Katrina revealed, coastal communities have become far more vulnerable to tropical storms and the long-term displacement of residents. Yet, because the emergency management model presumes that recovery quickly follows response, governments focus only on short-term, localized displacement. However, long-term and long-distance displacement exposes a gray area between immediate shelter and permanent housing, along with concerns about vulnerability, housing availability, and land development. We begin this article by discussing the transition between response and recovery. We then review literature regarding social vulnerability, displacement, provision of temporary housing, households' return decisions, and disaster-driven land development and housing construction processes. We close with thoughts on future research to increase planners' understanding of the issues involved and to help them craft effective policies.
-
Abstract. Natural hazards can be seen as a function of a specific natural process and human (economic) activity. Whereby the bulk of literature on natural hazard management has its focus on the natural process, an increasing number of scholars is emphasizing the importance of human activity in this context. Existing literature has identified certain socio-economic factors that determine the impact of natural disasters on society. The purpose of this paper is to highlight the effects of the institutional framework that influences human behavior by setting incentives and to point out the importance of institutional vulnerability. Results from an empirical investigation of large scale natural disasters between 1984 and 2004 show that countries with better institutions experience less victims and lower economic losses from natural disasters. In addition, the results suggest a non-linear relationship between economic development and economic disaster losses. The suggestions in this paper have implications for the discussion on how to deal with the adverse effects of natural hazards and how to develop efficient adaption strategies.
-
Land surface hydrology controls runoff production and the associated transport of sediments, and a wide variety of anthropogenic organic chemicals, and nutrients from upland landscape areas and hillslopes to streams and other water bodies. Based on interactions between landscape characteristics and precipitation inputs, watersheds respond differently to different climatic inputs (e.g. precipitation and solar radiation). This study compares the hydrologic responses of the MidAtlantic watersheds, and identifies the landscape and climatic descriptors that control those responses. Our approach was to select representative watersheds from the Mid-Atlantic region, group the watersheds by physiographic province and ecoregion, and then collect landscape, climate, and hydrologic response descriptor data for each selected watershed. For example, we extracted extensive landscape descriptor data from soil, land use and land cover, and digital elevation model geographic information system (GIS) databases. After sufficient data was collected, we conducted a variety of studies to determine how different landscape and climatic descriptors influence the hydrologic response of Mid-Atlantic watersheds. This report is comprised of four main parts. Part I describes the selection of the representative study watersheds and the determination of representative physical landscape descriptors for each watershed using geographic information system analysis tools. Part II characterizes the climate and associated hydrologic responses of the study watersheds. To select climate descriptors that are good predictors of hydrologic response, we examined a large number of candidate descriptors. Based on our examination, we selected dryness index and mean monthly rainfall as the best hydrologic response predictors. In Part II, we also present the results of our study hydrologic response comparisons of the study watersheds using a water balance approach. The water balance approach was based on comparisons of precipitation, streamflow, and evapotranspiration at annual, monthly, and daily time scales. These comparisons revealed that elevation and latitudinal position strongly influence hydrologic response. The results also showed that mountainous watersheds of the Appalachian Plateau, Ridge and Valley, and Blue Ridge Physiographic Provinces have more streamflow and less evapotranspiration than watersheds located in the Piedmont Province, and that snowmelt contributes a large portion of streamflow. Part III presents relationships we derived between landscape-climatic descriptors and the hydrologic response descriptors. Flow duration indices (Q1...Q95) were used to represent the hydrologic responses of the study watersheds. In Part III, we also present comparisons of the hydrologic responses of the study watersheds at high flow condition, represented by the Q1 index, medium flow condition represented by the Q50 index, and low flow condition represented by the Q95 index. These comparisons revealed that: the Appalachian Plateau, ridge-dominated Ridge and Valley, and Blue Ridge watersheds have the highest Q1 and Q50 indices; the valley-dominated Ridge and Valley watersheds have the lowest Q50 index, and the Piedmont watersheds have the lowest Q1 index and a relatively high Q95 index. Finally, Part IV discusses some of the implications of the study results for watershed management. We also present applications of the research for hydrologic modeling and watershed assessment.
-
Abstract Ice is present during a part of the year on many rivers of cold, and even temperate, regions of the globe. Though largely ignored in hydrological literature, river ice has serious hydrologic impacts, including extreme flood events caused by ice jams, interference with transportation and energy production, low winter flows and associated ecological and water quality consequences. It is also a major factor in the life cycle of many aquatic and other species, being both beneficial and destructive, depending on location and time of year. A brief review of the hydrologic aspects of river ice shows strong climatic links and illustrates the sensitivity of the entire ice regime to changes in climatic conditions. To date, this sensitivity has only partly been documented: the vast majority of related studies have focused on the timing of freeze‐up and break‐up over the past century, and indicate trends that are consistent with concomitant changes in air temperature. It is only in the past few years that attention has been paid to the more complex, and practically more important, question of what climatic change may do to the frequency and severity of extreme ice jams, floods and low flows. The probable changes to the ice regime of rivers, and associated hydrological processes and impacts, are discussed in the light of current understanding. Copyright © 2002 John Wiley & Sons, Ltd.
-
In this article a preliminary analysis of the loss of life caused by Hurricane Katrina in the New Orleans metropolitan area is presented. The hurricane caused more than 1,100 fatalities in the state of Louisiana. A preliminary data set that gives information on the recovery locations and individual characteristics for 771 fatalities has been analyzed. One-third of the analyzed fatalities occurred outside the flooded areas or in hospitals and shelters in the flooded area. These fatalities were due to the adverse public health situation that developed after the floods. Two-thirds of the analyzed fatalities were most likely associated with the direct physical impacts of the flood and mostly caused by drowning. The majority of victims were elderly: nearly 60% of fatalities were over 65 years old. Similar to historical flood events, mortality rates were highest in areas near severe breaches and in areas with large water depths. An empirical relationship has been derived between the water depth and mortality and this has been compared with similar mortality functions proposed based on data for other flood events. The overall mortality among the exposed population for this event was approximately 1%, which is similar to findings for historical flood events. Despite the fact that the presented results are preliminary they give important insights into the determinants of loss of life and the relationship between mortality and flood characteristics.
-
This paper examines the challenges facing English flood risk management (FRM) policy and practice when considering fair decision-making processes and outcomes at a range of spatial scales. It is recognised that flooding is not fair per se : the inherent natural spatial inequality of flood frequency and extent, plus the legacy of differential system interventions, being the cause. But, drawing on the three social justice models – procedural equality, Rawls’ maximin rule and maximum utility – the authors examine the fairness principles currently employed in FRM decision-making. This is achieved, firstly, in relation to the distribution of taxpayer’s money for FRM at the national, regional and local levels and, secondly, for non-structural strategies – most notably those of insurance, flood warnings and awareness raising, land use control, home owner adaptation and emergency management. A case study of the Lower Thames catchment illustrates the challenges facing decision-makers in ‘real life’: how those strategies which appear to be most technically and economically effective fall far short of being fair from either a vulnerability or equality perspective. The paper concludes that if we are to manage flood risk somewhat more fairly then a move in the direction of government funding of nationally consistent non-structural strategies, in conjunction with lower investment decision thresholds for other local-level FRM options, appears to offer a greater contribution to equality and vulnerability-based social justice principles than the status quo.
-
A physiographical space‐based kriging method is proposed for regional flood frequency estimation. The methodology relies on the construction of a continuous physiographical space using physiographical and meteorological characteristics of gauging stations and the use of multivariate analysis techniques. Two multivariate analysis methods were tested: canonical correlation analysis (CCA) and principal components analysis. Ordinary kriging, a geostatistical technique, was then used to interpolate flow quantiles through the physiographical space. Data from 151 gauging stations across the southern part of the province of Quebec, Canada, were used to illustrate this approach. In order to evaluate the performance of the proposed method, two validation techniques, cross validation and split‐sample validation, were applied to estimate flood quantiles corresponding to the 10, 50, and 100 year return periods. Results of the proposed method were compared to those produced by a traditional regional estimation method using the canonical correlation analysis. The proposed method yielded satisfactory results. It allowed, for instance, for estimating the 10 year return period specific flow with a coefficient of determination of up to 0.78. However, this performance decreases with the increase in the quantile return period. Results also showed that the proposed method works better when the physiographical space is defined using canonical correlation analysis. It is shown that kriging in the CCA physiographical space yields results as precise as the traditional estimation method, with a fraction of the effort and the computation time.
-
Rivers are sensitive to natural climate change as well as to human impacts such as flow modification and land-use change. Climate change could cause changes to precipitation amounts, the intensity of cyclonic storms, the proportion of precipitation falling as rain, glacier mass balance, and the extent of permafrost; all of which affect the hydrology and morphology of river systems. Changes to the frequency and magnitude of flood flows present the greatest threat. Historically, wetter periods are associated with significantly higher flood frequency and magnitude. These effects are reduced in drainage basins with large lakes or glacier storage. Alluvial rivers with fine-grained sediments are most sensitive, but all rivers will respond, except those flowing through resistant bedrock. The consequences of changes in flow include changes in channel dimensions, gradient, channel pattern, sedimentation, bank erosion rates, and channel migration rates. The most sensitive and vulnerable regions are in southern Canada, particularly those regions at risk of substantial increases in rainfall intensity and duration. In northern rivers, thawing of permafrost and changes to river-ice conditions are important concerns. The type and magnitude of effects will be different between regions, as well as between small and large river basins. Time scales of change will range from years to centuries. These changes will affect the use that we make of rivers and their floodplains, and may require mitigative measures. Radical change is also possible. Climatic impacts will be ubiquitous and will be in addition to existing and future direct human impact on streamflow and rivers.
-
Hurricane Katrina pounded the Gulf South at the end of August 2005, devastating lives and raising questions about how race and class influence human, as well as institutional, responses to disaster. This study uses survey data collected from over 1200 Hurricane Katrina survivors to examine these influences on a wide array of responses, ranging from evacuation timing and emotional support to housing and employment situations and plans to return to pre-storm communities. Results reveal strong racial and class differences, indicating that neither of these dimensions can be reduced to the other when seeking to understand responses by survivors themselves. This intersection renders low-income black home owners from New Orleans those most in need of targeted assistance as residents work to put themselves and the region back together.
-
Abstract This paper demonstrates the importance of disaggregating population data aggregated by census tracts or other units, for more realistic population distribution/location. A newly developed mapping method, the Cadastral-based Expert Dasymetric System (CEDS), calculates population in hyper-heterogeneous urban areas better than traditional mapping techniques. A case study estimating population potentially impacted by flood hazard in New York City compares the impacted population determined by CEDS with that derived by centroid-containment method and filtered areal-weighting interpolation. Compared to CEDS, 37% and 72% fewer people are estimated to be at risk from floods city-wide, using conventional areal weighting of census data, and centroid-containment selection, respectively. Undercounting of impacted population could have serious implications for emergency management and disaster planning. Ethnic/racial populations are also spatially disaggregated to determine any environmental justice impacts with flood risk. Minorities are disproportionately undercounted using traditional methods. Underestimating more vulnerable sub-populations impairs preparedness and relief efforts.
-
County-level socioeconomic and demographic data were used to construct an index of social vulnerability to environmental hazards, called the Social Vulnerability Index (SoVI) for the United States based on 1990 data. Copyright (c) 2003 by the Southwestern Social Science Association.