Votre recherche
Résultats 18 ressources
-
Losses from floods and the wide range of impacts have been at the forefront of hazard-triggered disasters in China. Affected by large-scale human activities and the environmental evolution, China’s defense flood situation is undergoing significant changes. This paper constructs a comprehensive flood disaster risk assessment model through systematic analysis of four key factors—hazard (H), exposure (E), susceptibility/sensitivity (S), and disaster prevention capabilities (C)—and establishes an evaluation index system. Using the Analytic Hierarchy Process (AHP), we determined indicator weights and quantified flood risk via the following formula R = H × E × V × C. After we applied this model to 16 towns in coastal Zhejiang Province, the results reveal three distinct risk tiers: low (R < 0.04), medium (0.04 ≤ R ≤ 0.1), and high (R > 0.1). High-risk areas (e.g., Longxi and Shitang towns) are primarily constrained by natural hazards and socioeconomic vulnerability, while low-risk towns benefit from a robust disaster mitigation capacity. Risk typology analysis further classifies towns into natural, social–structural, capacity-driven, or mixed profiles, providing granular insights for targeted flood management. The spatial risk distribution offers a scientific basis for optimizing flood control planning and resource allocation in the district. © 2025 by the authors.
-
This study evaluates the impacts of projected sea level rise (SLR) on coastal flooding across major Indian cities: Mumbai, Kolkata, Chennai, Visakhapatnam, Surat, Kochi, Thiruvananthapuram, and Mangaluru. Machine learning models, including Long Short-Term Memory (LSTM), Random Forest (RF), and Gradient Boosting (GB), has been employed to assess flood risks under four Shared Socioeconomic Pathways (SSP 126, 245, 370, and 585) emission scenarios. The research utilized these models because they demonstrate high performance in handling difficult data relationships and both temporal patterns and sophisticated environmental data. SLR projections provided by computers generate forecasts that combine with digital elevation models (DEMs) to determine coastal flooding risks and locate flood-prone areas. Results reveal that Mumbai and Kolkata face the highest flood risks, particularly under high emission scenarios, while Kochi and Mangaluru exhibit moderate exposure. Model performance is validated using residual analysis and Receiver Operating Characteristic (ROC) curves, confirming reliable predictive accuracy. These findings provide essential information for urban planners and policymakers to prioritize climate adaptation strategies in vulnerable coastal cities. © The Author(s) 2025.
-
AbstractThe frequency and severity of floods has increased in different regions of the world due to climate change. Although the impact of floods on human health has been extensively studied, the increase in the segments of the population that are likely to be impacted by floods in the future makes it necessary to examine how adaptation measures impact the mental health of individuals affected by these natural disasters. The goal of this scoping review is to document the existing studies on flood adaptation measures and their impact on the mental health of affected populations, in order to identify the best preventive strategies as well as limitations that deserve further exploration. This study employed the methodology of the PRISMA-ScR extension for scoping reviews to systematically search the databases Medline and Web of Science to identify studies that examined the impact of adaptation measures on the mental health of flood victims. The database queries resulted in a total of 857 records from both databases. Following two rounds of screening, 9 studies were included for full-text analysis. Most of the analyzed studies sought to identify the factors that drive resilience in flood victims, particularly in the context of social capital (6 studies), whereas the remaining studies analyzed the impact of external interventions on the mental health of flood victims, either from preventive or post-disaster measures (3 studies). There is a very limited number of studies that analyze the impact of adaptation measures on the mental health of populations and individuals affected by floods, which complicates the generalizability of their findings. There is a need for public health policies and guidelines for the development of flood adaptation measures that adequately consider a social component that can be used to support the mental health of flood victims.
-
Combined sewer surcharges in densely urbanized areas have become more frequent due to the expansion of impervious surfaces and intensified precipitation caused by climate change. These surcharges can generate system overflows, causing urban flooding and pollution of urban areas. This paper presents a novel methodology to mitigate sewer system surcharges and control surface water. In this methodology, flow control devices and urban landscape retrofitting are proposed as strategies to reduce water inflow into the sewer network and manage excess water on the surface during extreme rainfall events. For this purpose, a 1D/2D dual drainage model was developed for two case studies located in Montreal, Canada. Applying the proposed methodology to these two sites led to a reduction of the volume of wastewater overflows by 100% and 86%, and a decrease in the number of surface overflows by 100% and 71%, respectively, at the two sites for a 100-year return period 3-h Chicago design rainfall. It also controlled the extent of flooding, reduced the volume of uncontrolled surface floods by 78% and 80% and decreased flooded areas by 68% and 42%, respectively, at the two sites for the same design rainfall.
-
Geohazards associated with the dynamics of the liquid and solid water of the Earth’s hydrosphere, such as floods and glacial processes, may pose significant risks to populations, activities and properties [...]
-
Climate change and more frequent severe storms have caused persistent flooding, storm surges, and erosion in the northeastern coastal region of the United States. These weather-related disasters have continued to generate negative environmental consequences across many communities. This study examined how coastal residents’ exposure to flood risk information and information seeking behavior were related to their threat appraisal, threat-coping efficacy, and participation in community action in the context of building social resilience. A random sample of residents of a coastal community in the Northeastern United States was selected to participate in an online survey (N = 302). Key study results suggested that while offline news exposure was weakly related to flood vulnerability perception, online news exposure and mobile app use were both weakly associated with flood-risk information seeking. As flood vulnerability perception was strongly connected to flood severity perception but weakly linked to lower self-efficacy beliefs, flood severity perception was weakly and moderately associated with response-efficacy beliefs and information seeking, respectively. Furthermore, self-efficacy beliefs, response efficacy beliefs, and flood-risk information seeking were each a weak or moderate predictor of collective efficacy beliefs. Lastly, flood risk information-seeking was a strong predictor and collective efficacy beliefs were a weak predictor of community action for flood-risk management. This study tested a conceptual model that integrated the constructs from risk communication, information seeking, and protection motivation theory. Based on the modeling results reflecting a set of first-time findings, theoretical and practical implications are discussed.
-
Changes in society's vulnerability to natural hazards are important to understand, as they determine current and future risks, and the need to improve protection. Very large impacts including high numbers of fatalities occur due to single storm surge flood events. Here, we report on impacts of global coastal storm surge events since the year 1900, based on a compilation of events and data on loss of life. We find that over the past, more than eight thousand people are killed and 1.5 million people are affected annually by storm surges. The occurrence of very substantial loss of life (g10000 persons) from single events has however decreased over time. Moreover, there is a consistent decrease in event mortality, measured by the fraction of exposed people that are killed, for all global regions, except South East Asia. Average mortality for storm surges is slightly higher than for river floods, but lower than for flash floods. We also find that for the same coastal surge water level, mortality has decreased over time. This indicates that risk reduction efforts have been successful, but need to be continued with projected climate change, increased rates of sea-level rise and urbanisation in coastal zones.
-
L’adaptation au changement climatique est un nouvel enjeu pour la gestion des territoires. Au niveau local, elle apparaît souvent comme une injonction, alors même que, pour l’instant, elle est un concept flou. Elle est présentée comme l’application de bonnes pratiques, mais les questions « qui s’adapte à quoi ? » et « pourquoi ? » demeurent implicites. En explicitant ces éléments, nous proposons de montrer que l’adaptation est une question plurielle et politique. À partir de l’analyse des documents de planification et des plans d’action faisant référence aux changements globaux sur un territoire littoral, nous montrons l’existence de quatre logiques d’adaptation distinctes, plus ou moins transformatrices du système socioécologique, que l’on peut appréhender à partir de la typologie suivante : « contrôler et maintenir », « faire faire », « réguler » et « reconfigurer », qui portent en germe différentes reconfigurations socioéconomiques et politiques. , Since the 2000s, “adaptation” is a new dictate for the management of local territories in France, but its implementation is fairly limited. Adaptation is mainly a semantically unclear and loosely defined concept. Decision-makers could “operationalize” adaptation by simply applying a specific methodology. However, adaptation is not a mere mechanism; it is also a process that implies economic, social and ecological trade-offs for the socio-ecological system. These political dimensions are often unformulated. In order to provide a vehicle to clarify this concept and its political dimensions, we propose a typology of adaptation measures. What does adaptation mean? Adjustment of what (territories, populations, communities, local economies, etc.), to what (climate change, global change) and with what effects? We reviewed local actions and strategic plans related to climate but also to urban planning, flooding and water management on the eastern coastal area of Languedoc Roussillon in Mediterranean France. We conducted and analyzed semi-structured interviews with institutional actors. We analyzed and classified public policy instruments, associated the underlying “logic” (raise limiting factors, create a new awareness, etc.), and their potential effects. Throughout our effort to develop a typology, we have highlighted the political dimensions of adaptation actions and shed a light on trade-offs linked to adaptation choices.
-
The coast is a complex environment that comprises seawater, underwater, soil, atmosphere, and other environmental factors. Traditional and new pollutants, represented by oil spills and microplastic (MPs), persist in posing a constant threat to the ecosystems and social-economic features of coastal regions. Besides, the shoreline is exposed to various environment conditions, which may significantly affect the behaviors of pollutants on beaches. An in-depth understanding of the occurrence and fate of pollutants in coastal areas is a prerequisite for the development of sound prevention and remediation strategies. Firstly, the physicochemical behavior of crude oil on various types of shorelines under different environmental conditions were reviewed. The penetration, remobilization, and retention of stranded oil on shorelines are affected by the beach topography and the natural environment. The attenuation and fate of oil on shorelines from laboratory and field experiments were discussed. In addition, the source, type, distribution, and factors of MPs in the coastal areas were summarized. What is more, the occurrence and environmental risk of emerging plastics waste—personal protective equipment (PPE)—in the coastal environment during and pandemic were discussed. Then, the role of natural nanobubbles (NBs) in the fate and transport of spilled oil were investigated through laboratory experiments and model simulations. NBs significantly increased the concentration of dissolved oxygen as well as changed the pH, zeta potential, and surface tension of the water. With the assistance of external energy, the bulk NBs enhanced the efficiency in oil detachment from the surface of the substrate. At the same time, the surface NBs on the substrate obstructed the downward transport of oil colloids. Considering the behavior between the NBs in two different phases and the oil droplets, the oil droplets tended to bind to the NBs. Next, the behavior and movement of various MPs in the presence of bulk NBs was explored. In the presence of NBs, the binding of MPs and NBs resulted in an increase in the measured average particle size and concentration. The velocity of motion of MPs driven by NBs varies under different salinity conditions. The increase in ionic strength reduced the energy barrier between particles and promoted their aggregation. Thus, the binding of NBs and MPs became more stable, which in turn affected the movement of MPs in the water. Polyethylene (PE1) with small particle size was mainly affected by Brownian motion and its rising was limited, therefore polyethylene (PE2) with large particle size rose faster than PE1 in suspension, especially in the presence of NBs. The effect of nanobubbles on the mobilization of MPs in shorelines subject to seawater infiltration was further studied. The motion of MPs under continuous and transient conditions, as well as the upward transport induced with flood were considered. Salinity altered the energy barriers between particles, which in turn affected the movement of MPs within the matrix. In addition, hydrophilic MPs were more likely to infiltrate within the substrate and had different movement patterns under both continuous and transient conditions. The motion of the MPs within the substrate varied with flow rate, and NBs limited the vertical movement of MPs in the tidal zone. It was also observed that NBs adsorbed readily onto substrates, altering the surface properties of substrates, particularly their ability to attach and detach from other substances. Finally, the changing characteristics and environmental behaviors of PPE wastes when exposed to the shoreline environment were examined. The transformation of chain structure and chemical composition of masks and gloves as well as the decreased mechanical strength after UV weathering were observed. In addition, the physical abrasion caused by sand further exacerbated the release of MPs and leachable hazardous contaminates from masks and gloves. In conclusion, the coastal zone is threatened by various pollutants, including traditional pollutants (like the oil spill) and emerging pollutants (like MPs). Due to the complexity of the coastal zone, the occurrence, transport and fate of pollutants can be controlled by many factors, and some factors that are ignored before can also alter the environmental behavior of pollutants in the coastal zone. Natural NBs can change the properties of the water environment and affect the surface properties of the substrate. Bulk NBs contribute to the oil detachment from the sand surface, and surface nanobubbles in the substrate obstruct the downward transport of oil colloids. The behavior and mobilization of MPs in the coastal `zone are subject to mutual forces between the substrate, MPs, NBs, and other factors. Coastal zones are not only the main receptor of pollutants from oceans and lands but also play a key role in their fate and transport.
-
Irma was a major hurricane that developed during the 2017 season. It was a category 5 on the Saffir–Simpson Hurricane wind scale. This hurricane caused severe damage in the Caribbean area and the Florida Keys. The social, economic, and environmental impacts, mainly related to coastal flooding, were also significant in Cuba. The maximum limits of coastal flooding caused by this hurricane were determined in this research. Field trips and the use of the GPS supported our work, which focused on both the northern and southern coasts of the Ciego de Ávila province. This work has been critical for improving coastal flooding scenarios related to a strong hurricane, as it has been the first experience according to hurricane data since 1851. Results showed that the Punta Alegre and Júcaro towns were the most affected coastal towns. The locals had never seen similar flooding in these places before. The differences between flood areas associated with Hurricane Irma and previous modeled hazard scenarios were evident (the flooded areas associated with Hurricane Irma were smaller than those modeled for categories 1, 3, and 5 hurricanes). The effects of this hurricane on the most vulnerable coastal settlements, including the impacts on the archeological site “Los Buchillones”, were also assessed.
-
This study discusses the flooding related consequences of climate change on most populous Canadian cities and flow regulation infrastructure (FRI). The discussion is based on the aggregated results of historical and projected future flooding frequencies and flood timing as generated by Canada-wide hydrodynamic modelling in a previous study. Impact assessment on 100 most populous Canadian cities indicate that future flooding frequencies in some of the most populous cities such as Toronto and Montreal can be expected to increase from 100 (250) years to 15 (22) years by the end of the 21st century making these cities highest at risk to projected changes in flooding frequencies as a consequence of climate change. Overall 40–60% of the analyzed cities are found to be associated with future increases in flooding frequencies and associated increases in flood hazard and flood risk. The flooding related impacts of climate change on 1072 FRIs located across Canada are assessed both in terms of projected changes in future flooding frequencies and changes in flood timings. Results suggest that 40–50% of the FRIs especially those located in southern Ontario, western coastal regions, and northern regions of Canada can be expected to experience future increases in flooding frequencies. FRIs located in many of these regions are also projected to experience future changes in flood timing underlining that operating rules for those FRIs may need to be reassessed to make them resilient to changing climate.
-
Short-duration precipitation extremes are widely used in the design of engineering infrastructure systems and they also lead to high impact flash flood events and landslides. Better understanding of these events in a changing climate is therefore critical. This study assesses characteristics of short-duration precipitation extremes of 1-, 3-, 6- and 12-h durations in terms of the precipitation-temperature (P–T) relationship in current and future climates for ten Canadian climatic regions using the limited area version of the global environment multiscale (GEM) model. The GEM simulations, driven by ERA-Interim reanalysis and two coupled global climate models (CanESM2 and MPI-ESM), reproduce the general observed regional P–T relationship characteristics in current climate (1981–2010), such as sub-CC (Clausius–Clapeyron) and CC scalings for the coastal and northern, and inland regions, respectively, albeit with some underestimation. Analysis of the transient climate change simulations suggests important shifts and/or extensions of the P–T curve to higher temperature bins in future climate (2071–2100) for RCP4.5 and 8.5 scenarios, particularly for 1-h duration. Analysis of the spatial patterns of dew point depression (temperature minus dew point temperature) and convective available potential energy (CAPE) corresponding to short-duration precipitation extremes for different temperature bins show their changing relative importance from low to high temperature bins. For the low-temperature bins, short-duration precipitation extremes are largely due to high relative humidity, while for high-temperature bins, strong convection due to atmospheric instability brought by surface warming is largely responsible. The analysis thus addresses some of the key knowledge gaps related to the behavior of P–T relationship and associated mechanisms for the Canadian regions.
-
The impacts of natural disasters are often disproportionally borne by poor or otherwise marginalized groups. However, while disaster risk modelling studies have made progress in quantifying the exposure of populations, limited advances have been made in determining the socioeconomic characteristics of these exposed populations. Here, we generate synthetic structural and socioeconomic microdata for around 9.5 million persons for six districts in Bangladesh as vector points using a combination of spatial microsimulation techniques and dasymetric modelling. We overlay the dataset with satellite-derived flood extents of Cyclone Fani, affecting the region in 2019, quantifying the number of exposed households, their socioeconomic characteristics, and the exposure bias of certain household variables. We demonstrate how combining various modelling techniques could provide novel insights into the exposure of poor and vulnerable groups, which could help inform the emergency response after extreme events as well targeting adaptation options to those most in need of them.
-
This study integrates Land Change Modeling with the Plan Integration for Resilience Scorecard™ methodology to assess coastal communities’ preparedness for uncertain future urban growth and flood hazards. Findings indicate that, under static climate conditions, the network of plans in Tampa is well prepared across all urban growth scenarios, but less so in the face of a changing climate. Specifically, scenario outputs that consider climate change suggest the need for more resilient growth to reduce flood vulnerability compared with the current land use plan. Notably, some existing policies are likely to lead to counterproductive outcomes in a future with more extensive flooding.
-
This study presents the first nationwide spatial assessment of flood risk to identify social vulnerability and flood exposure hotspots that support policies aimed at protecting high-risk populations and geographical regions of Canada. The study used a national-scale flood hazard dataset (pluvial, fluvial, and coastal) to estimate a 1-in-100-year flood exposure of all residential properties across 5721 census tracts. Residential flood exposure data were spatially integrated with a census-based multidimensional social vulnerability index (SoVI) that included demographic, racial/ethnic, and socioeconomic indicators influencing vulnerability. Using Bivariate Local Indicators of Spatial Association (BiLISA) cluster maps, the study identified geographic concentration of flood risk hotspots where high vulnerability coincided with high flood exposure. The results revealed considerable spatial variations in tract-level social vulnerability and flood exposure. Flood risk hotspots belonged to 410 census tracts, 21 census metropolitan areas, and eight provinces comprising about 1.7 million of the total population and 51% of half-a-million residential properties in Canada. Results identify populations and the geographic regions near the core and dense urban areas predominantly occupying those hotspots. Recognizing priority locations is critically important for government interventions and risk mitigation initiatives considering socio-physical aspects of vulnerability to flooding. Findings reinforce a better understanding of geographic flood-disadvantaged neighborhoods across Canada, where interventions are required to target preparedness, response, and recovery resources that foster socially just flood management strategies.
-
Many disasters are a complex mix of natural hazards and human action. At Risk argues that the social, political and economic environment is as much a cause of disasters as the natural environment. Published within the International Decade of Natural Hazard Reduction, this book suggests ways in which both the social and natural sciences can be analytically combined through a 'disaster pressure and release' model. Arguing that the concept of vulnerability is central to an understanding of disasters and their prevention or mitigation, the authors explore the extent and ways in which people gain access to resources. Individual chapters apply analytical concepts to famines and drought, biological hazards, floods, coastal storms, and earthquakes, volcanos and landslides - the hazards that become disasters'. Finally, the book draws practical and policy conclusions to promote a safer environment and reduce vulnerability.
-
Abstract This study integrates novel data on 100-year flood hazard extents, exposure of residential properties, and place-based social vulnerability to comprehensively assess and compare flood risk between Indigenous communities living on 985 reserve lands and other Canadian communities across 3701 census subdivisions. National-scale exposure of residential properties to fluvial, pluvial, and coastal flooding was estimated at the 100-year return period. A social vulnerability index (SVI) was developed and included 49 variables from the national census that represent demographic, social, economic, cultural, and infrastructure/community indicators of vulnerability. Geographic information system-based bivariate choropleth mapping of the composite SVI scores and of flood exposure of residential properties and population was completed to assess the spatial variation of flood risk. We found that about 81% of the 985 Indigenous land reserves had some flood exposure that impacted either population or residential properties. Our analysis indicates that residential property-level flood exposure is similar between non-Indigenous and Indigenous communities, but socioeconomic vulnerability is higher on reserve lands, which confirms that the overall risk of Indigenous communities is higher. Findings suggest the need for more local verification of flood risk in Indigenous communities to address uncertainty in national scale analysis.