Votre recherche
Résultats 243 ressources
-
This study aims to conduct a grid-scale extreme precipitation risk assessment in Xuanwu District, Nanjing, so as to fill the gaps in existing indicator systems and improve the precision of risk characterization. By integrating physical, social, and environmental indicators, a risk assessment framework was constructed to comprehensively represent the characteristics of extreme precipitation risk. This study applied the entropy weight method to calculate indicator weights, combined with ArcGIS technology and the K-means clustering algorithm, to analyze the spatial distribution characteristics of risk under a 100-year extreme precipitation scenario and to identify key influencing indicators across different risk levels. The results showed that extreme precipitation risk levels in Xuanwu District exhibited significant spatial heterogeneity, with an overall distribution pattern of low risk in the central area and high risk in the surrounding areas. The influence mechanisms of key indicators showed tiered response characteristics: the low-risk areas were mainly controlled by the submerged areas of urban and rural, industrial and mining, and residential lands, water body area, soil erosion level, and normalized difference vegetation index (NDVI). The medium-risk areas were influenced by the submerged areas of urban and rural, industrial and mining, residential lands, the submerged areas of forest land, emergency service response time to disaster-affected areas, soil erosion level, and NDVI. The high-risk areas were jointly dominated by the submerged areas of urban and rural, industrial and mining, residential lands, the submerged areas of forest land, and NDVI. The extremely high-risk areas were driven by three factors—the submerged areas of forest land, emergency service response time to disaster-affected areas, and the proportion of the largest patch to the landscape area. This study improves the indicator system for extreme precipitation risk assessment and clarifies the tiered response patterns of risk-driving indicators, providing a scientific basis for developing differentiated flood control strategies in Xuanwu District while offering important theoretical support for improving regional flood disaster resilience. © 2025 Editorial Office of Journal of Disaster Prevention and Mitigation Engineering. All rights reserved.
-
Urban flooding threatens Indian cities and is made worse by rapid urbanization, climate change and poor infrastructure. Severe flooding occurred in cities such as Mumbai, Chennai and Ahmedabad. This has caused huge economic losses and displacement. This study addresses the limitations of traditional flood forecasting methods. It has to contend with the complex dynamics of urban flooding. We offer a deep learning approach which uses the network Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) networks to improve flood risk prediction. Our CNN-LSTM model combines spatial data (water table, topography) and temporal data (historical model) to classify flood risk as low or high. This method includes collecting data pre-processing (MinMaxScaler, LabelEncoder) Modeling, Training and Evaluation. The results demonstrate the accuracy of flood risk predictions and provide insights into flexible strategies for urban flood management. This research highlights the role of data-driven approaches in improving urban planning to reduce flood risk in high-risk areas. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2026.
-
Global warming has intensified the hydrological cycle, resulting in more frequent extreme precipitation events and altered spatiotemporal precipitation patterns in urban areas, thereby increasing the risk of urban flooding and threatening socio-economic and ecological security. This study investigates the characteristics of summer extreme precipitation in the Poyang Lake City Group (PLCG) from 1971 to 2022, utilizing the China Daily Precipitation Dataset and NCEP/NCAR reanalysis data. Nine extreme precipitation indices were examined through linear trend analysis, Mann–Kendall tests, wavelet transforms, and correlation methods to quantify trends, periodicity, and atmospheric drivers. The key findings include: (1) All indices exhibited increasing trends, with RX1Day and R95p exhibiting significant rises (p < 0.05). PRCPTOT, R20, and SDII also increased, indicating heightened precipitation intensity and frequency. (2) R50, RX1Day, and SDII demonstrated east-high-to-west-low spatial gradients, whereas PRCPTOT and R20 peaked in the eastern and western PLCG. More than over 88% of stations recorded rising trends in PRCPTOT and R95p. (3) Abrupt changes occurred during 1993–2009 for PRCPTOT, R50, and SDII. Wavelet analysis revealed dominant periodicities of 26–39 years, linked to atmospheric oscillations. (4) Strong subtropical highs, moisture convergence, and negative OLR anomalies were closely associated with extreme precipitation. Warmer SSTs in the eastern equatorial Pacific amplified precipitation in preceding seasons. This study provides a scientific basis for flood prevention and climate adaptation in the PLCG and highlighting the region’s vulnerability to monsoonal shifts under global warming. © 2025 by the authors.
-
With global warming, the hydrological cycle is intensifying with more frequent and severe droughts and floods, placing water resources and their dependent communities under increasing stress. Guidance and insights into the projection of future water conditions are, therefore, increasingly needed to inform climate change adaptation. Hydrological projections can provide such insights when suitably designed for user needs, produced from the best available climate knowledge, and leverage appropriate hydrological models. However, producing such hydrological projections is a complex process that requires skills and knowledge spanning from the often-siloed disciplines of climate, hydrology, communication, and decision-making. Groundwater projections are still underrepresented compared to surface water projections, despite the importance of groundwater to sustain society and the environment. Accordingly, this paper bridges these silos and fills a gap by providing detailed guidance on the important steps and best practices to develop groundwater-inclusive hydrological projections that can effectively support decision-making. Using an extensive literature review and our practical experience as climate scientists, hydro(geo)logists, numerical modelers, uncertainty experts and decision-makers, here we provide: (a) an overview of climate change hydrological impacts as background knowledge; (b) a step-by-step guide to produce groundwater-inclusive hydrological projections under climate change, targeted to both scientists and water practitioners; (c) a summary of important considerations related to hydrological projection uncertainty; and (d) insights to use hydrological projections and their associated uncertainty for impactful communication and decision-making. By providing this practical guide, our paper addresses a critical interdisciplinary knowledge gap and supports enhanced decision-making and resilience to climate change threats. © 2025 Commonwealth of Australia. Earth Science New Zealand. Acclimatised Pty Ltd and The Author(s). Earth's Future published by Wiley Periodicals LLC on behalf of American Geophysical Union.
-
Named Data Networking (NDN) represents a promising Information-Centric Networking architecture that addresses limitations of traditional host-centric Internet protocols by emphasizing content names rather than host addresses for communication. While NDN offers advantages in content distribution, mobility support, and built-in security features, its stateful forwarding plane introduces significant vulnerabilities, particularly Interest Flooding Attacks (IFAs). These IFA attacks exploit the Pending Interest Table (PIT) by injecting malicious interest packets for non-existent or unsatisfiable content, leading to resource exhaustion and denial-of-service attacks against legitimate users. This survey examines research advances in IFA detection and mitigation from 2013 to 2024, analyzing seven relevant published detection and mitigation strategies to provide current insights into this evolving security challenge. We establish a taxonomy of attack variants, including Fake Interest, Unsatisfiable Interest, Interest Loop, and Collusive models, while examining their operational characteristics and network performance impacts. Our analysis categorizes defense mechanisms into five primary approaches: rate-limiting strategies, PIT management techniques, machine learning and artificial intelligence methods, reputation-based systems, and blockchain-enabled solutions. These approaches are evaluated for their effectiveness, computational requirements, and deployment feasibility. The survey extends to domain-specific implementations in resource-constrained environments, examining adaptations for Internet of Things deployments, wireless sensor networks, and high-mobility vehicular scenarios. Five critical research directions are proposed: adaptive defense mechanisms against sophisticated attackers, privacy-preserving detection techniques, real-time optimization for edge computing environments, standardized evaluation frameworks, and hybrid approaches combining multiple mitigation strategies. © 2025 by the authors.
-
Atmospheric methane (CH4) concentrations have increased to 2.5 times their pre-industrial levels, with a marked acceleration in recent decades. CH4 is responsible for approximately 30% of the global temperature rise since the Industrial Revolution. This growing concentration contributes to environmental degradation, including ocean acidification, accelerated climate change, and a rise in natural disasters. The column-averaged dry-air mole fraction of methane (XCH4) is a crucial indicator for assessing atmospheric CH4 levels. In this study, the Sentinel-5P TROPOMI instrument was employed to monitor, map, and estimate CH4 concentrations on both regional and global scales. However, TROPOMI data exhibits limitations such as spatial gaps and relatively coarse resolution, particularly at regional scales or over small areas. To mitigate these limitations, a novel Convolutional Neural Network Autoencoder (CNN-AE) model was developed. Validation was performed using the Total Carbon Column Observing Network (TCCON), providing a benchmark for evaluating the accuracy of various interpolation and prediction models. The CNN-AE model demonstrated the highest accuracy in regional-scale analysis, achieving a Mean Absolute Error (MAE) of 28.48 ppb and a Root Mean Square Error (RMSE) of 30.07 ppb. This was followed by the Random Forest (RF) regressor (MAE: 29.07 ppb; RMSE: 36.89 ppb), GridData Nearest Neighbor Interpolator (NNI) (MAE: 30.06 ppb; RMSE: 32.14 ppb), and the Radial Basis Function (RBF) Interpolator (MAE: 80.23 ppb; RMSE: 90.54 ppb). On a global scale, the CNN-AE again outperformed other methods, yielding the lowest MAE and RMSE (19.78 and 24.7 ppb, respectively), followed by RF (21.46 and 27.23 ppb), GridData NNI (25.3 and 32.62 ppb), and RBF (43.08 and 54.93 ppb).
-
Floods constitute the most significant natural hazard to societies worldwide. Population growth and unchecked development have led to floodplain encroachment. Modelling suggests that climate change will regionally intensify the threat posed by future floods, with more people in harm's way. From a global change perspective, past flood events and their spatial-temporal patterns are of particular interest because they can be linked to former climate patterns, which can be used to guide future climate predictions. Millennial and centennial time series contain evidence of very rare extreme events, which are often considered by society as ‘unprecedented’. By understanding their timing, magnitude and frequency in conjunction with prevailing climate regime, we can better forecast their future occurrence. This Virtual Special Issue (VSI) entitled Temporal and spatial patterns in Holocene floods under the influence of past global change, and their implications for forecasting “unpredecented” future events comprises 14 papers that focus on how centennial and millennia-scale natural and documentary flood archives help improve future flood science. Specifically, documentation of large and very rare flood episodes challenges society's lack of imagination regarding the scale of flood disasters that are possible (what we term here, the “unknown unknowns”). Temporal and spatial flood behaviour and related climate patterns as well as the reconstruction of flood propagation in river systems are important foci of this VSI. These reconstructions are crucial for the provision of robust and reliable data sets, knowledge and baseline information for future flood scenarios and forecasting. We argue that it remains difficult to establish analogies for understanding flood risk during the current period of global warming. Most studies in this VSI suggest that the most severe flooding occurred during relatively cool climate periods, such as the Little Ice Age. However, flood patterns have been significantly altered by land use and river management in many catchments and floodplains over the last two centuries, thereby obscuring the climate signal. When the largest floods in instrumental records are compared with paleoflood records reconstructed from natural and documentary archives, it becomes clear that precedent floods should have been considered in many cases of flood frequency analysis and flood risk modelling in hydraulic infrastructure. Finally, numerical geomorphological analysis and hydrological simulations show great potential for testing and improving our understanding of the processes and factors involved in the temporal and spatial behaviour of floods. © 2025 The Authors
-
The non-aquatic fauna (e.g. insects, birds, mammals) that occupies seasonally flooded floodplain forests in the Amazon is a major component of the region’s biodiversity, and the responses portrayed to cope with this inundation are varied. However, no systematic review of these species, including specialist species (exclusive to this environment), and their responses to seasonal inundation has yet been performed. Here, we provide an up-to-date and thorough examination of research on non-aquatic fauna that utilize Amazonian floodplain forests and their responses to seasonal flooding. We conducted a survey of published and unpublished studies from 1853 to 2023 through the Web of Science and Google Scholar platforms. We found a total of 445 studies, including 11,513 species of non-aquatic animals that inhabit floodplain forests. We identified ten main types of responses to flooding, the three most common being vertical migration, occupation of floating substrates and eggs submerged in a dormant state. Results suggest great behavioral, morphological and physiological plasticity among non-aquatic species, including those that are not floodplain forest specialists. Several types of responses occur independently in widely distinct taxonomic groups, emphasizing convergent strategies to deal with seasonal flooding. Our findings underline the uniqueness of the floodplain fauna and its importance for the regional biodiversity conservation agenda. © The Author(s), under exclusive licence to Society of Wetland Scientists 2025.
-
Floods and droughts cause large economic and environmental impacts and incalculable human suffering. Despite growing evidence of important synergies in their management, floods and droughts tend to be mostly managed in silos. The synergistic management of flood and drought risk is limited by the inability of current governance systems to change at the scope, depth and speed required to address the emerging challenges of climate change induced hydroclimatic risks. Building on the concept of continuous transformational change and combining key elements across sectoral governance frameworks, this paper proposes a transformative governance conceptual framework that enables national governments to work across silos in a whole of government approach to lead a whole of society effort to manage the whole hydroclimatic spectrum. Spain, a country with an advanced hydroclimatic risk management system, is presented as an illustrative example to explore the possible idiosyncrasies of implementing the proposed changes on the ground. © 2025 Núñez Sánchez et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
-
This study introduces a novel methodology for assessing ice-jam flood hazards along river channels. It employs empirical equations that relate non-dimensional ice-jam stage to discharge, enabling the generation of an ensemble of longitudinal profiles of ice-jam backwater levels through Monte-Carlo simulations. These simulations produce non-exceedance probability profiles, which indicate the likelihood of various flood levels occurring due to ice jams. The flood levels associated with specific return periods were validated using historical gauge records. The empirical equations require input parameters such as channel width, slope, and thalweg elevation, which were obtained from bathymetric surveys. This approach is applied to assess ice-jam flood hazards by extrapolating data from a gauged reach at Fort Simpson to an ungauged reach at Jean Marie River along the Mackenzie River in Canada’s Northwest Territories. The analysis further suggests that climate change is likely to increase the severity of ice-jam flood hazards in both reaches by the end of the century. This methodology is applicable to other cold-region rivers in Canada and northern Europe, provided similar fluvial geomorphological and hydro-meteorological data are available, making it a valuable tool for ice-jam flood risk assessment in other ungauged areas. © 2025 by the authors.
-
Monitoring changes in climatic extremes is vital, as they influence current and future climate while significantly impacting ecosystems and society. This study examines trends in extreme precipitation indices over an Indian tropical river basin, analyzing and ranking 28 Coupled Model Intercomparison Project Phase 6 (CMIP6) Global Climate Models (GCMs) based on their performance against India Meteorological Department (IMD) data. The top five performing GCMs were selected to construct multi-model ensembles (MMEs) using Machine Learning (ML) algorithms, Random Forest (RF), Support Vector Machine (SVM), Multiple Linear Regression (MLR), and the Arithmetic Mean. Statistical metrics reveal that the application of an RF model for ensembling performs better than other models. The analysis focused on six IMD-convention indices and eight indices recommended by the Expert Team on Climate Change Detection and Indices (ETCCDI). Future projections were examined for three timeframes: near future (2025–2050), mid-future (2051–2075), and far future (2076–2100) for SSP245 and SSP585 scenarios. Statistical trend analysis, the Mann-Kendall test, Sen’s Slope estimator, and Innovative Trend Analysis (ITA), were applied to the MME to assess variability and detect changes in extreme precipitation trends. Compared to SSP245, in the SSP585 scenario, Total Precipitation (PRCPTOT) shows a significant decreasing trend in the near future, mid-future, and far future and Moderate Rain (MR) shows a decreasing trend in the near future and far future of monsoon season. The findings reveal significant future trends in extreme precipitation, impacting Sustainable Development Goals (SDGs) achievement and providing crucial insights for sustainable water resource management and policy planning in the Kali River basin. © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025.
-
Floods are natural hazards that have the greatest socioeconomic impact worldwide, given that 23% of the global population live in urban areas at risk of flooding. In this field of research, the analysis of flood risk has traditionally been studied based mainly on approaches specific to civil engineering such as hydraulics and hydrology. However, these patterns of approaching the problem in research seem to be changing in recent years. During the last few years, a growing trend has been observed towards the use of methodology-based approaches oriented towards urban planning and land use management. In this context, this study analyzes the evolution of these research patterns in the field by developing a bibliometric meta-analysis of 2694 scientific publications on this topic published in recent decades. Evaluating keyword co-occurrence using VOSviewer software version 1.6.20, we analyzed how phenomena such as climate change have modified the way of addressing the study of this problem, giving growing weight to the use of integrated approaches improving territorial planning or implementing adaptive strategies, as opposed to the more traditional vision of previous decades, which only focused on the construction of hydraulic infrastructures for flood control.
-
ABSTRACT Waterlogging is a critical abiotic stress factor severely affecting maize, one of the World's most widely cultivated cereal crops. Globally, maize is a crucial food crop, grown in diverse agro‐climatic zones, from subtropical to temperate climates. Waterlogging, resulting from flooding, intense rainfall and inefficient drainage systems, continues to be a major abiotic stress factor influencing crop productivity globally. Prolonged exposure to excess soil moisture leads to oxygen depletion in the root zone, resulting in restricted aerobic respiration, impaired nutrient uptake and disruption of physiological processes. This review aims to provide a comprehensive overview of the morphological, physiological and biochemical changes maize undergoes in response to waterlogging stress. Key aspects such as root system adaptation, reduction in photosynthetic efficiency, accumulation of reactive oxygen species (ROS) and hormonal imbalances are systematically examined. Furthermore, we delve into the metabolic shifts that enable maize to survive under anaerobic conditions, including alterations in energy metabolism, carbohydrate partitioning, and activating antioxidant defence mechanisms. The role of key signalling molecules such as ethylene is explored, highlighting their involvement in regulating stress responses. Additionally, the review discusses agronomic and genetic approaches for improving waterlogging tolerance in maize, including the development of stress‐resilient cultivars through breeding and biotechnological interventions. By synthesising recent advances in understanding maize's response to waterlogging, this paper identifies gaps and proposes future research directions, focusing on the integration of molecular and field‐based strategies. The insights from this review are crucial for developing sustainable agricultural practices aimed at mitigating the adverse impacts of waterlogging on maize productivity, particularly in flood‐prone areas. Breeding for waterlogging resilience integrates the creation of robust varieties, plant morphology optimisation, and utilisation of tolerant secondary traits through combined conventional and biotechnological breeding strategies.
-
During and after a disaster, selected services and systems are needed to recover and maintain important functions of society. These are deemed critical infrastructure (CI). When these services are disrupted due to the impacts of a disaster, response and recovery may be slowed or halted. As flooding events are occurring more often across larger geographic extents, advancing methods for assessing risks of flooding to CI is vital. We use Utah, USA as a case study to demonstrate a novel, transferable approach for assessing fine-scale flood risks to CI across large geographic areas. Specifically, our assessment approach integrates high-resolution building footprints of schools, first responder facilities, and hospitals, and flood risk maps from a state-of-the-art big data flood model and the U.S. Federal Emergency Management Agency (FEMA). We show that 94 CI facilities across Utah are at risk of severe flooding, and that those risks to CI are almost entirely overlooked by FEMA flood risk maps. Though nearly every CI building is located outside of FEMA flood zones, FEMA maps inaccurately and incompletely represent flood risks, indicating that future flood risk assessment approaches should use flood risk maps from other sources. The approach we introduce can be used to assess flood risks to CI elsewhere, and case study results can be applied to inform flood risk reduction efforts in Utah. © 2025 Elsevier Ltd
-
An accurate study of extreme precipitation risk events is crucial for flood control, urban planning, and engineering design. The Copula function effectively handles uncertainties and nonlinear interactions among multiple hydrological variables, capturing complex correlations in extreme precipitation events for more precise risk assessments. Selecting the parameters of the Copula function is critical, as it defines the function’s shape and the dependence structure between variables, influencing its application. Traditional parameterization methods, like maximum likelihood estimation and least squares, often require large datasets and distribution assumptions, making them cumbersome for high-dimensional data. This research presents a model using an enhanced whale optimization algorithm to estimate Copula parameters (CLCWOA-Copula), aiming to assess return period (RP) and failure probability associated with extreme precipitation risk events. Monthly precipitation data from Zhengzhou, China, from 1950 to 2024 is analyzed, using the 90th percentile as the extreme precipitation threshold. Marginal distributions are fitted using the P-III and gamma distributions, etc., which are then combined using CLCWOA-Copula to analyze coincident RP, joint RP, Kendall RP, and failure probability under composite conditions. The results demonstrate that this optimization method possesses strong global search capabilities and parallel computing abilities, yielding optimal Copula parameter values within few iterations and selecting the best-fit Copula function based on AIC, R², and RMSE. The Kendall RP and failure probability offer more accurate tools for extreme precipitation risk analysis; when Pmax reaches 540 mm, P90 reaches 1080 mm, or R90 reaches 0.83, a one-in-a-century extreme precipitation event is indicated. This study provides important insights for risk metrics applicable to extreme weather. © The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2025.
-
Extreme weather events, such as heat waves, heavy rainfall and droughts, have become more frequent and intense in Brazil. According to climate change scenarios, this trend, which has a negative impact on people’s health and living conditions, will continue. Here, we analysed indicators for extreme weather events resulting from climate change, projected for the 21st century, alongside socio-demographic indicators for Brazilian municipalities, in an attempt to identify populations exposed to the risks of the climate crisis. We calculated the values of indicators for extreme air temperature and precipitation events, based on NEX-GDDP-CMIP6 data, for a reference period and for the future, as well as socio-demographic indicators based on recent census data. Using Spearman’s coefficient, we then calculated anomaly indicators for the future time intervals and analysed correlations with the socio-demographic indicators. Our results indicate a reduction in cold days and an increase in hot days and heat waves in both scenarios (SSP2-4.5 and SSP5-8.5), with the most changes occurring in the highest emission scenario. The extreme precipitation indicators suggest both an increase and a reduction in intense precipitation and droughts in a number of the country’s regions. The projected changes are more intense in the highest emission scenario, and in the North and Northeast regions. We noted a trend for greatest occurrence of extreme events in locations with a higher proportion of Black, Parda/Brown, Indigenous and Quilombola populations, and the socially vulnerable. We recommend that policies to adapt and mitigate the impacts of climate change focus on reducing inequalities and promoting climate justice. © The Author(s) 2025.
-
In recent years,rapid urbanization and global warming have led to frequent and severe rainstorm and flood disasters in the Sichuan-Chongqing region. This change will not only have a serious impact on the ecological environment and socio-economic development of the area,but also significantly increase the pressure on urban infrastructure and threaten the safety of people's lives and property. Therefore,it is particularly important to scientifically and accurately analyze the disaster risk of rainstorm and flood in Sichuan-Chongqing region in the past and future. This paper utilized daily precipitation data from 50 selected meteorological stations in the Sichuan-Chongqing region,precipitation data from 5 CMIP6 models,gridded population and economic data under Shared Socioeconomic Pathways(SSPs),as well as DEM and land use remote sensing data. Firstly,using Taylor diagrams,quantitative indices(S),and standardized anomaly sequences,the study evaluated the simulation performance of 5 individual CMIP6 models,an equal-weighted aggregation of 5 models(EWA-5),and unequally-weighted aggregations of 5 models(UEWA-5)for five selected extreme precipitation indices. Then,by building a comprehensive risk assessment model of rainstorm and flood disaster based on disaster risk and vulnerability of disaster bearing body,the study conducted risk assessments,future projections,and comparative analyses of rainstorm and flood disasters during baseline(1995-2014)and future near-term(2025-2044)and long-term (2045-2064)periods under three different climate change scenarios(SSP1-2. 6,SSP2-4. 5,SSP5-8. 5). Results indicated:(1)The EC-Earth3 model performed best in simulating the five extreme precipitation indices,with correlation coefficients between simulated and observed values of 0. 78 for R95p,0. 90 for RX1day,and 0. 77 for RX5day. Overall,the simulation performance of UEWA-5 exceeded that of EWA-5.(2)During the baseline period,central Sichuan exhibited high values for the five extreme precipitation indices,followed by eastern Sichuan and Chongqing,while western Sichuan showed lower values. The year 1998 recorded peak values for all five indices,with a maximum single-day precipitation of 86 mm for RX1day and an intensity(SDII)value of 11. 3 mm·d-1.(3)In future periods,the five extreme precipitation indices display a spatial distribution characterized by higher values in central regions and lower values around the periphery. Higher levels of social vulnerability and radiative forcing correlate with larger values of extreme precipitation indices. Comparing the two future periods,values of the indices are larger in the long term,notably with R95p averaging 846. 8 mm,an increase of 169. 2 mm compared to the near term.(4)During historical periods,areas with higher comprehensive risk of rainstorm and flood disasters were concentrated in central Sichuan and downtown Chongqing. In the two future periods,the high and moderately high-risk areas in central Sichuan are expected to expand,while the moderate-risk areas will shrink. The range of low-risk areas in the western Sichuan Plateau will also decrease,and the risk levels in southern Sichuan and eastern Sichuan-Chongqing border areas will respectively decrease to moderate-low and low-risk zones. Comparing the two future periods,the range of moderately high and moderate-risk areas in central Sichuan is expected to expand,while southwestern Chongqing will transition to a moderate-risk area in the long term. Other regions will generally maintain their original risk levels. Changes in disaster risk levels in the Sichuan-Chongqing region are less pronounced with increasing social vulnerability and radiative forcing,especially in the western Sichuan Plateau and northeastern Sichuan,where changes in disaster risk levels are minimal. The study results can provide important references for reducing disaster risks,enhancing emergency response capabilities,and making scientifically informed decisions for disaster prevention in the Sichuan-Chongqing region. © Editorial Department of Plateau Meteorology.
-
Purpose of the Review: Climate change is intensifying the pressures on aquatic ecosystems by altering the dynamics of contaminants, with cascading effects on ecological and human health. This review synthesizes recent evidence on how rising temperatures, altered precipitation patterns, and extreme weather events influence chemical and microbial contaminant dynamics in aquatic environments. Recent Findings: Key findings reveal that elevated temperatures enhance phosphorus pollution and algal blooms, increase heavy metal release from sediments, and promote the mobilization of organic pollutants. Concurrently, climate change exacerbates microbial contamination by facilitating the spread of waterborne microbial contaminants, especially posing more pressure to antimicrobial resistance-related contaminants through temperature-driven horizontal gene transfer and extreme precipitation events. Complex interactions between chemical and microbial contaminants like heavy metals co-selecting for antibiotic resistance further amplify risks. The compounded effects of climate change and contaminants threaten water quality, ecosystem resilience, and public health, particularly through increased toxicant exposure via seafood and waterborne disease outbreaks. Despite growing recognition of these interactions, critical gaps remain in understanding their synergistic mechanisms, especially in data-scarce regions. Summary: This review highlights the urgent need for integrated monitoring, predictive modeling, and adaptive policies under a One Health framework to mitigate the multifaceted impacts of climate-driven contamination. Future research should prioritize real-world assessments of temperature effects, urban overflow dynamics during extreme weather, and the socio-behavioral dimensions of contaminant spread to inform effective mitigation strategies. © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025.
-
Les événements météorologiques extrêmes (EME) et les désastres qu’ils entrainent provoquent des conséquences psychosociales qui sont modulées en fonction de différents facteurs sociaux. On constate aussi que les récits médiatiques et culturels qui circulent au sujet des EME ne sont pas représentatifs de l’ensemble des expériences de personnes sinistrées : celles qui en subissent les conséquences les plus sévères tendent aussi à être celles qu’on « entend » le moins dans l’espace public. Ces personnes sont ainsi susceptibles de vivre de l’injustice épistémique, ce qui a des effets délétères sur le soutien qu’elles reçoivent. Face à ces constats s’impose la nécessité de mieux comprendre la diversité des expériences d’EME et d’explorer des stratégies pour soutenir l’ensemble des personnes sinistrées dans leur rétablissement psychosocial. Cet article soutient que la recherche narrative peut contribuer à répondre à ces objectifs. En dépeignant des réalités multiples, la recherche narrative centrée sur les récits de personnes sinistrées présente aussi un intérêt significatif pour l’amélioration des pratiques d’intervention en contexte de désastre. , Extreme weather events (EWE) and their resulting disasters cause psychosocial consequences that are moderated by different social factors. Media and cultural accounts of EWEs do not represent the full range of disaster survivor experiences, that is, those who experienced the most severe consequences also tend to be those least “heard” in the public arena. These people are therefore most likely to experience forms of epistemic injustice that negatively impact the support offered to cope with disaster. Considering these findings, there is a need to better understand the diversity of EWE experiences and explore strategies for supporting all disaster survivors in their psychosocial recovery. This article argues that narrative research can help meet these needs. By portraying the multiple realities of people affected by EWEs, narrative research focusing on the stories of disaster survivors is also of significant interest for improving intervention practices in this context.
-
Abstract Extreme precipitation is often challenging to predict but has substantial societal impacts, especially when it is persistent and affects a large region. We analyze Rossby wave packets, jet streams, atmospheric blocking, Madden–Julian oscillation (MJO), and El Niño–Southern Oscillation (ENSO) and elucidate the associated large-scale physical mechanisms contributing to the occurrence and persistence of extreme precipitation regimes (EPRs) in eastern North America as identified in an earlier study. The large temporal and spatial scales of EPRs, as well as the climatological study of EPRs, distinguish this study from previous precipitation studies, which are mostly on shorter-duration events. EPRs are characterized by an unusually slow-moving and persistent large-scale synoptic-scale circulation structure favorable for the southerly flow of subtropical moisture into eastern North America. The strength of the southerly flow is critical in producing large precipitation rates. The favorable synoptic structure is established by the start of the EPR, moves very slowly eastward until the middle of the EPR, and then travels faster eastward by the end of the EPR. The persistence of midlatitude ridges and the long-wavelength and slow-moving nature of the synoptic structure are critical to the longevity of EPRs. The latent heat release associated with moisture transport and ascent in cyclones provides a feedback mechanism contributing to the persistence. MJO phase 3 is favored before the EPR start, while phases 4 and 5 are favored during the EPR. During EPRs, there is no significant preference for El Niño or La Niña conditions, but a negative Pacific decadal oscillation (PDO) is favored. Significance Statement Cool-season extreme precipitation regimes often lead to flooding and other societal impacts and represent a significant forecast challenge. We analyze large-scale weather patterns and physical mechanisms in the North Pacific and North America contributing to the occurrence and persistence of extreme precipitation regimes. Recognizing them could promote their predictability since the North Pacific is a climatologically favored area for persistent anomalous large-scale weather patterns. The regimes are characterized by an unusually slow-moving and persistent large-scale weather pattern favoring the southerly flow of subtropical moisture into eastern North America. The persistence, size, and slow-moving nature of the weather pattern are critical to the regimes’ longevity. Storms tracking on the west of high pressure areas provide a feedback mechanism that helps maintain the regimes.