Votre recherche
Résultats 20 ressources
-
Cette thèse explore l'adaptation urbaine au changement climatique dans les quartiers informels du Sud Global. Ce sont des lieux de grands défis et de réponses innovantes. Le contexte mondial d’exclusion postcoloniale et capitaliste entraîne la vulnérabilité et le risque supplémentaire du changement climatique augmente ces aléas contextuels. Des chercheurs ont critiqué les réponses traditionnelles en matière de planification de l’adaptation, les jugeant trop prescriptives, technologiquement dépendantes et manquant les besoins locaux. L’adaptation communautaire peut être trop isolée et axée sur les besoins des individus et des élites face à la diversité des défis locaux. Ni l’un ni l’autre ne prennent en compte les dimensions politiques de la planification de l’adaptation. En réponse, les spécialistes critiques de l’adaptation urbaine ont appelé à une meilleure compréhension des expériences locales afin de comprendre comment les gens priorisent, négocient et réagissent à une multiplicité de risques. En réponse à ces appels, ce projet cherche à mieux comprendre comment les gens perçoivent et répondent à ces défis à travers une étude de cas unique et exploratoire. Grâce à l’étude de cas qualitative dans le quartier de Panorama, situé dans la municipalité de Yumbo, en banlieue de Cali en Colombie, le projet cherche à comprendre comment l'identité et le pouvoir influencent l'accès aux ressources et aux institutions nécessaires pour s'adapter. Le projet se concentre sur deux sites de Panorama : un comité local d'aménagement soucieux de la sécurité foncière et une fondation écologique travaillant sur la conservation des espaces verts. Les résultats mettent en évidence des règles du jeu inégales où les habitants les plus vulnérables empruntent des voies parfois illégales pour accéder à la terre et au logement. Plus les résidents sont établis, plus ils bénéficient d'avantages et d'expérience pour jouer le système. Les dirigeants et les experts travaillent dur pour négocier entre les formalités. Cependant, l’absence d’un processus de planification transparent laisse divers intérêts se disputer les ressources, ce qui conduit parfois à des conflits et met fin à la créativité. Les résultats de la recherche suggèrent que la planification de l’adaptation urbaine dans les contextes informels des pays du Sud doit continuer à s’appuyer sur des recherches et des pratiques qui tiennent compte de la diversité et des conflits afin de mieux faciliter une réponse juste et équitable à la crise climatique.
-
Abstract Extreme precipitation events can have a significant impact on the environment, agriculture, economy and safety, making close monitoring of their short‐ and long‐term trends essential for the development of effective mitigation and adaptation strategies. In this study, we analysed 16 in situ observation datasets from four different climate zones in Algeria, spanning from 1969 to 2021. The trend analysis was conducted using the original Mann–Kendall test and seven modified tests to eliminate the effects of short‐term persistence. Our findings reveal a significant increasing trend of extreme precipitation variability for most stations in the Warm Mediterranean climate zone, except for the Consecutive dry days index, which showed a negative trend for the same zone, while stations in the Cold/Warm semi‐arid climate and Cold desert climate (Bwk) zones showed a decreasing trend. Additionally, all index series with significant long‐term trends were affected by a significant shift in their means, which was confirmed by both the Lombard and Pettitt tests. However, when we used the modified MPT and the test eliminating the effects of long‐term persistence, the significance of the shifts and the trend decreased. Our results suggest that while extreme precipitation events have been increasing in some parts of Algeria; the trend may not be statistically significant in the long‐run, indicating the necessity of revisiting and refreshing the findings of previous studies for a more current perspective.
-
The deterioration of anhydrite rock exposed to a freeze–thaw environment is a complex process. Therefore, this paper systematically investigated the physical and mechanical evolutions of freeze–thawed anhydrite rock through a series of multi-scale laboratory tests. Meanwhile, the correlation between pore structure and macroscopic mechanical parameters was discussed, and the deterioration mechanisms of anhydrite rock under freeze–thaw cycles were revealed. The results show that with the increase in freeze–thaw processes, the mechanical strength, elastic modulus, cohesion, proportions of micropores (r ≤ 0.1 μm), and PT-Ipore throat (0–0.1 μm) decrease exponentially. In comparison, the mass variation, proportions of mesopores (0.1 μm < r < 1 μm), macropores (r ≥ 1 μm), and PT-II pore throat (0.1–4 μm) increase exponentially. After 120 cycles, the mean porosity increases by 66.27%, and there is a significant honeycomb and pitted surface phenomenon. Meanwhile, as the freeze–thaw cycles increase, the frost resistance coefficient decreases, while the damage variable increases. The correlation analysis between pore structure and macroscopic mechanical parameters shows that macropores play the most significant role in the mechanical characteristic deterioration of freeze–thawed anhydrite rock. Finally, it is revealed that the water–rock expansion and water dissolution effects play a crucial role in the multi-scale damage of anhydrite rock under the freeze–thaw environment.
-
Abstract Run-of-river power plants (ROR) represent the majority of hydroelectric plants worldwide. Their environmental impacts are not well documented and are believed to be limited, particularly regarding the contamination of food webs by methylmercury (MeHg), a neurotoxin. RORs are typically installed in small rivers where combined effects of watershed disturbances with dam construction can complicate environmental management. We report a multi-year case study on the Saint-Maurice River (Canada) where an unpredicted temporary increase in MeHg accumulation in predator fish was observed after the construction of two ROR plants. The associated pondages acted as sedimentation basins for mercury (Hg) and organic matter from a watershed disturbed by a forest fire and by logging. This fresh organic carbon likely fueled microbial MeHg production. Hg methylation was more associated with environmental conditions than to the presence of Hg, and main methylating microbial groups were identified. A constructed wetland was a site of significant Hg methylation but was not the main source of the fish Hg increase. Organic carbon degradation was the main driver of MeHg accumulation at the base of the food chain whereas trophic levels explained the variations at the top of the food chain. Overall, carbon cycling was a key driver of Hg dynamics in this system, and ROR plants can cause temporary (ca. 12 years) Hg increase in food webs when developed in disturbed watersheds, although this increase is smaller than for large reservoirs. Recommendations for future ROR construction are to establish a good environmental monitoring plan with initial high temporal resolution and to consider recent and potential watershed disturbances in the plan.
-
To study the mechanical and cracking modes of anhydrite rock under the freeze–thaw weathering process, the physico-mechanical characteristics and morphology evolutions of anhydrite samples were determined by a series of laboratory tests. Then, a numerical simulation model was established through the PFC2D program, and the types and number of cracks during the uniaxial compression conditions were analyzed. Finally, the distribution of maximum principal stress and shear stress was revealed. The results indicate that as the number of freeze–thaw cycles increases, there is a growth in the mass loss rate and macroscopic damage variables while the uniaxial compression strength and elastic modulus decrease exponentially. Under uniaxial compression stress, the proportion of tensile cracks in the anhydrite model is the highest, followed by tensile shear cracks and compressive shear cracks. As the number of freeze–thaw cycles increases, the proportion of tensile cracks increases exponentially, while the proportion of tensile shear cracks and compressive shear cracks decreases exponentially. Furtherly, it is found that the maximum principal stress and maximum shear stress extreme values decrease exponentially with the increase of freeze–thaw cycles. For example, after 120 cycles, the maximum shear stress at the peak stress point decreased by 47.3%. The research results will promote the comprehension of anhydrite rock geotechnical engineering disaster mechanisms in cold regions.
-
Many studies have projected malaria risks with climate change scenarios by modelling one or two environmental variables and without the consideration of malaria control interventions. We aimed to predict the risk of malaria with climate change considering the influence of rainfall, humidity, temperatures, vegetation, and vector control interventions (indoor residual spraying (IRS) and long-lasting insecticidal nets (LLIN)). We used negative binomial models based on weekly malaria data from six facility-based surveillance sites in Uganda from 2010–2018, to estimate associations between malaria, environmental variables and interventions, accounting for the non-linearity of environmental variables. Associations were applied to future climate scenarios to predict malaria distribution using an ensemble of Regional Climate Models under two Representative Concentration Pathways (RCP4.5 and RCP8.5). Predictions including interaction effects between environmental variables and interventions were also explored. The results showed upward trends in the annual malaria cases by 25% to 30% by 2050s in the absence of intervention but there was great variability in the predictions (historical vs RCP 4.5 medians [Min–Max]: 16,785 [9,902–74,382] vs 21,289 [11,796–70,606]). The combination of IRS and LLIN, IRS alone, and LLIN alone would contribute to reducing the malaria burden by 76%, 63% and 35% respectively. Similar conclusions were drawn from the predictions of the models with and without interactions between environmental factors and interventions, suggesting that the interactions have no added value for the predictions. The results highlight the need for maintaining vector control interventions for malaria prevention and control in the context of climate change given the potential public health and economic implications of increasing malaria in Uganda.
-
Abstract The objective of this study is to compare the spatiotemporal variability of seasonal daily mean flows measured in 17 watersheds, grouped into three homogeneous hydroclimatic regions, during the period 1930–2023 in southern Quebec. With regard to spatial variability, unlike extreme daily flows, seasonal daily mean flows are very poorly correlated with physiographic factors and land use and land cover. In fall, they are not correlated with any physiographic or climatic factor. In winter, they are positively correlated with the rainfall and winter daily mean maximum temperatures. In spring, they are strongly correlated positively with the snowfall but negatively with the spring daily mean maximum temperatures. However, in summer, they are better correlated with forest area and, to a lesser extent, with the rainfall. As for their temporal variability, the application of six different statistical tests revealed a general increase in daily mean flows in winter due to early snowmelt and increased rainfall in fall. In summer, flows decreased significantly in the snowiest hydroclimatic region on the south shore due to the decrease in the snowfall. In spring, no significant change in flows was globally observed in the three hydroclimatic regions despite the decrease in the snowfall due to the increase in the rainfall. In fall, flows increased significantly south of 47°N on both shores due to the increase in the rainfall. This study demonstrates that, unlike extreme flows, the temporal variability of seasonal daily average flows is exclusively influenced by climatic variables in southern Quebec. Due to this influence, seasonal daily mean flows thus appear to be the best indicator for monitoring the impacts of changes in precipitation regimes and seasonal temperatures on river flows in southern Quebec.
-
Cette stratégie oriente les activités scientifiques d'Environnement et Changement climatique Canada afin de favoriser un avenir plus vert et plus durable. Elle met l'accent sur nos gens, nos valeurs et nos priorités tournées vers l'avenir en tant que ministère fédéral à vocation scientifique.