UQAM logo
Page d'accueil de l'UQAM Étudier à l'UQAM Bottin du personnel Carte du campus Bibliothèques Pour nous joindre

Service des bibliothèques

Veille bibliographique sur les inondations
UQAM logo
Veille bibliographique sur les inondations
  • Bibliography
  1. Vitrine des bibliographies
  2. Veille bibliographique sur les inondations
  3. Résultats
Veille bibliographique sur les inondationsVeille bibliographique sur les inondations
  • Bibliography

Votre recherche

Réinitialiser la recherche

Aide

L’interface de recherche est composée de trois sections : Rechercher, Explorer et Résultats. Celles-ci sont décrites en détail ci-dessous.

Vous pouvez lancer une recherche aussi bien à partir de la section Rechercher qu’à partir de la section Explorer.

Rechercher

Cette section affiche vos critères de recherche courants et vous permet de soumettre des mots-clés à chercher dans la bibliographie.

  • Chaque nouvelle soumission ajoute les mots-clés saisis à la liste des critères de recherche.
  • Pour lancer une nouvelle recherche plutôt qu’ajouter des mots-clés à la recherche courante, utilisez le bouton Réinitialiser la recherche, puis entrez vos mots-clés.
  • Pour remplacer un mot-clé déjà soumis, veuillez d’abord le retirer en décochant sa case à cocher, puis soumettre un nouveau mot-clé.
  • Vous pouvez contrôler la portée de votre recherche en choisissant où chercher. Les options sont :
    • Partout : repère vos mots-clés dans tous les champs des références bibliographiques ainsi que dans le contenu textuel des documents disponibles.
    • Dans les auteurs ou contributeurs : repère vos mots-clés dans les noms d’auteurs ou de contributeurs.
    • Dans les titres : repère vos mots-clés dans les titres.
    • Dans les années de publication : repère vos mots-clés dans le champ d’année de publication (vous pouvez utiliser l’opérateur OU avec vos mots-clés pour trouver des références ayant différentes années de publication. Par exemple, 2020 OU 2021).
    • Dans tous les champs : repère vos mots-clés dans tous les champs des notices bibliographiques.
    • Dans les documents : repère vos mots-clés dans le contenu textuel des documents disponibles.
  • Vous pouvez utiliser les opérateurs booléens avec vos mots-clés :
    • ET : repère les références qui contiennent tous les termes fournis. Ceci est la relation par défaut entre les termes séparés d’un espace. Par exemple, a b est équivalent à a ET b.
    • OU : repère les références qui contiennent n’importe lequel des termes fournis. Par exemple, a OU b.
    • SAUF : exclut les références qui contiennent le terme fourni. Par exemple, SAUF a.
    • Les opérateurs booléens doivent être saisis en MAJUSCULES.
  • Vous pouvez faire des groupements logiques (avec les parenthèses) pour éviter les ambiguïtés lors de la combinaison de plusieurs opérateurs booléens. Par exemple, (a OU b) ET c.
  • Vous pouvez demander une séquence exacte de mots (avec les guillemets droits), par exemple "a b c". Par défaut la différence entre les positions des mots est de 1, ce qui signifie qu’une référence sera repérée si elle contient les mots et qu’ils sont consécutifs. Une distance maximale différente peut être fournie (avec le tilde), par exemple "a b"~2 permet jusqu’à un terme entre a et b, ce qui signifie que la séquence a c b pourrait être repérée aussi bien que a b.
  • Vous pouvez préciser que certains termes sont plus importants que d’autres (avec l’accent circonflexe). Par exemple, a^2 b c^0.5 indique que a est deux fois plus important que b dans le calcul de pertinence des résultats, tandis que c est de moitié moins important. Ce type de facteur peut être appliqué à un groupement logique, par exemple (a b)^3 c.
  • La recherche par mots-clés est insensible à la casse et les accents et la ponctuation sont ignorés.
  • Les terminaisons des mots sont amputées pour la plupart des champs, tels le titre, le résumé et les notes. L’amputation des terminaisons vous évite d’avoir à prévoir toutes les formes possibles d’un mot dans vos recherches. Ainsi, les termes municipal, municipale et municipaux, par exemple, donneront tous le même résultat. L’amputation des terminaisons n’est pas appliquée au texte des champs de noms, tels auteurs/contributeurs, éditeur, publication.

Explorer

Cette section vous permet d’explorer les catégories associées aux références.

  • Les catégories peuvent servir à affiner votre recherche. Cochez une catégorie pour l’ajouter à vos critères de recherche. Les résultats seront alors restreints aux références qui sont associées à cette catégorie.
  • Dé-cochez une catégorie pour la retirer de vos critères de recherche et élargir votre recherche.
  • Les nombres affichés à côté des catégories indiquent combien de références sont associées à chaque catégorie considérant les résultats de recherche courants. Ces nombres varieront en fonction de vos critères de recherche, de manière à toujours décrire le jeu de résultats courant. De même, des catégories et des facettes entières pourront disparaître lorsque les résultats de recherche ne contiennent aucune référence leur étant associées.
  • Une icône de flèche () apparaissant à côté d’une catégorie indique que des sous-catégories sont disponibles. Vous pouvez appuyer sur l’icône pour faire afficher la liste de ces catégories plus spécifiques. Par la suite, vous pouvez appuyer à nouveau pour masquer la liste. L’action d’afficher ou de masquer les sous-catégories ne modifie pas vos critères de recherche; ceci vous permet de rapidement explorer l’arborescence des catégories, si désiré.

Résultats

Cette section présente les résultats de recherche. Si aucun critère de recherche n’a été fourni, elle montre toute la bibliographie (jusqu’à 20 références par page).

  • Chaque référence de la liste des résultats est un hyperlien vers sa notice bibliographique complète. À partir de la notice, vous pouvez continuer à explorer les résultats de recherche en naviguant vers les notices précédentes ou suivantes de vos résultats de recherche, ou encore retourner à la liste des résultats.
  • Des hyperliens supplémentaires, tels que Consulter le document ou Consulter sur [nom d’un site web], peuvent apparaître sous un résultat de recherche. Ces liens vous fournissent un accès rapide à la ressource, des liens que vous trouverez également dans la notice bibliographique.
  • Le bouton Résumés vous permet d’activer ou de désactiver l’affichage des résumés dans la liste des résultats de recherche. Toutefois, activer l’affichage des résumés n’aura aucun effet sur les résultats pour lesquels aucun résumé n’est disponible.
  • Diverses options sont fournies pour permettre de contrôler l’ordonnancement les résultats de recherche. L’une d’elles est l’option de tri par Pertinence, qui classe les résultats du plus pertinent au moins pertinent. Le score utilisé à cette fin prend en compte la fréquence des mots ainsi que les champs dans lesquels ils apparaissent. Par exemple, si un terme recherché apparaît fréquemment dans une référence ou est l’un d’un très petit nombre de termes utilisé dans cette référence, cette référence aura probablement un score plus élevé qu’une autre où le terme apparaît moins fréquemment ou qui contient un très grand nombre de mots. De même, le score sera plus élevé si un terme est rare dans l’ensemble de la bibliographie que s’il est très commun. De plus, si un terme de recherche apparaît par exemple dans le titre d’une référence, le score de cette référence sera plus élevé que s’il apparaissait dans un champ moins important tel le résumé.
  • Le tri par Pertinence n’est disponible qu’après avoir soumis des mots-clés par le biais de la section Rechercher.
  • Les catégories sélectionnées dans la section Explorer n’ont aucun effet sur le tri par pertinence. Elles ne font que filtrer la liste des résultats.
Secteurs et disciplines
  • Nature et Technologie
Année de publication
  • Entre 2000 et 2025
    • Entre 2010 et 2019
      • 2016

Résultats 33 ressources

Recently addedDate décroissanteDate croissanteAuteur A-ZAuteur Z-ATitre A-ZTitre Z-A
  • 1
  • 2
  • Page 1 de 2
Résumés
  • Feldman, D., Contreras, S., Karlin, B., Basolo, V., Matthew, R., Sanders, B., Houston, D., Cheung, W., Goodrich, K., Reyes, A., Serrano, K., Schubert, J., & Luke, A. (2016). Communicating flood risk: Looking back and forward at traditional and social media outlets. International Journal of Disaster Risk Reduction, 15, 43–51. https://doi.org/10.1016/j.ijdrr.2015.12.004

    The communication of information about natural hazard risks to the public is a difficult task for decision makers. Research suggests that newer forms of technology present useful options for building disaster resilience. However, how effectively these newer forms of media can be used to inform populations of the potential hazard risks in their community remains unclear. This research uses primary data from an in-person survey of 164 residents of Newport Beach, California during the spring of 2014 to ascertain the current and preferred mechanisms through which individuals receive information on flood risks in their community. Factor analysis of survey data identified two predominant routes of dissemination for risk information: older traditional media and newer social media sources. A logistic regression model was specified to identify predictors for choosing a particular communication route. This analysis revealed that age is the central factor in predicting the sources people use to receive risk information. We follow the analysis by discussing this finding and its policy implications.

    Consulter sur www.sciencedirect.com
  • Husain, S. Z., Alavi, N., Bélair, S., Carrera, M. L., Zhang, S., Fortin, V., Abrahamowicz, M., & Gauthier, N. (2016). The Multibudget Soil, Vegetation, and Snow (SVS) Scheme for Land Surface Parameterization: Offline Warm Season Evaluation. Journal of Hydrometeorology, 17(8). https://doi.org/10.1175/jhm-d-15-0228.1

    AbstractA new land surface parameterization scheme, named the Soil, Vegetation, and Snow (SVS) scheme, was recently developed at Environment and Climate Change Canada to replace the operationally used Interactions between Soil, Biosphere, and Atmosphere (ISBA) scheme. The new scheme is designed to address a number of weaknesses and limitations of ISBA that have been identified over the last decade. Unlike ISBA, which calculates a single energy budget for the different land surface components, SVS introduces a new tiling approach that includes separate energy budgets for bare ground, vegetation, and two different snowpacks (over bare ground and low vegetation and under high vegetation). The inclusion of a photosynthesis module as an option to determine the surface stomatal resistance is another significant addition in SVS. The representation of vertical water transport through soil has also been substantially improved in SVS with the introduction of multiple soil layers. Overall, offline simulations conduc...

  • Shi, L., Chu, E., Anguelovski, I., Aylett, A., Debats, J., Goh, K., Schenk, T., Seto, K. C., Dodman, D., Roberts, D., Roberts, J. T., & VanDeveer, S. D. (2016). Roadmap towards justice in urban climate adaptation research. Nature Climate Change, 6(2). https://doi.org/10.1038/nclimate2841
    Consulter sur www.nature.com
  • Brigode, P., Brissette, F., Nicault, A., Perreault, L., Kuentz, A., Mathevet, T., & Gailhard, J. (2016). Streamflow variability over the 1881–2011 period in northern Québec: comparison of hydrological reconstructions based on tree rings and geopotential height field reanalysis. Climate of The Past, 12(9). https://doi.org/10.5194/cp-12-1785-2016

    Over the last decades, different methods have been used by hydrologists to extend observed hydro-climatic time series, based on other data sources, such as tree rings or sedimentological datasets. For example, tree ring multi-proxies have been studied for the Caniapiscau Reservoir in northern Quebec (Canada), leading to the reconstruction of flow time series for the last 150 years. In this paper, we applied a new hydro-climatic reconstruction method on the Caniapiscau Reservoir and compare the obtained streamflow time series against time series derived from dendrohydrology by other authors on the same catchment and study the natural streamflow variability over the 1881–2011 period in that region. This new reconstruction is based not on natural proxies but on a historical reanalysis of global geopotential height fields, and aims firstly to produce daily climatic time series, which are then used as inputs to a rainfall–runoff model in order to obtain daily streamflow time series. The performances of the hydro-climatic reconstruction were quantified over the observed period, and showed good performances, in terms of both monthly regimes and interannual variability. The streamflow reconstructions were then compared to two different reconstructions performed on the same catchment by using tree ring data series, one being focused on mean annual flows and the other on spring floods. In terms of mean annual flows, the interannual variability in the reconstructed flows was similar (except for the 1930–1940 decade), with noteworthy changes seen in wetter and drier years. For spring floods, the reconstructed interannual variabilities were quite similar for the 1955–2011 period, but strongly different between 1880 and 1940. The results emphasize the need to apply different reconstruction methods on the same catchments. Indeed, comparisons such as those above highlight potential differences between available reconstructions and, finally, allow a retrospective analysis of the proposed reconstructions of past hydro-climatological variabilities.

  • Alavi, N., Bélair, S., Fortin, V., Zhang, S., Husain, S. Z., Carrera, M. L., & Abrahamowicz, M. (2016). Warm Season Evaluation of Soil Moisture Prediction in the Soil, Vegetation, and Snow (SVS) Scheme. Journal of Hydrometeorology, 17(8). https://doi.org/10.1175/jhm-d-15-0189.1

    AbstractA new land surface scheme has been developed at Environment and Climate Change Canada (ECCC) to provide surface fluxes of momentum, heat, and moisture for the Global Environmental Multiscale (GEM) atmospheric model. In this study, the performance of the Soil, Vegetation, and Snow (SVS) scheme in estimating the surface and root-zone soil moisture is evaluated against the Interactions between Soil, Biosphere, and Atmosphere (ISBA) scheme currently used operationally at ECCC within GEM for numerical weather prediction. In addition, the sensitivity of SVS soil moisture results to soil texture and vegetation data sources (type and fractional coverage) has been explored. The performance of SVS and ISBA was assessed against a large set of in situ observations as well as the brightness temperature data from the Soil Moisture Ocean Salinity (SMOS) satellite over North America. The results indicate that SVS estimates the time evolution of soil moisture more accurately, and compared to ISBA, results in highe...

  • Thiboult, A., Anctil, F., & Boucher, M.-A. (2016). Accounting for three sources of uncertainty in ensemble hydrological forecasting. Hydrology and Earth System Sciences. https://doi.org/10.5194/hess-20-1809-2016

    Abstract. Seeking more accuracy and reliability, the hydrometeorological community has developed several tools to decipher the different sources of uncertainty in relevant modeling processes. Among them, the ensemble Kalman filter (EnKF), multimodel approaches and meteorological ensemble forecasting proved to have the capability to improve upon deterministic hydrological forecast. This study aims to untangle the sources of uncertainty by studying the combination of these tools and assessing their respective contribution to the overall forecast quality. Each of these components is able to capture a certain aspect of the total uncertainty and improve the forecast at different stages in the forecasting process by using different means. Their combination outperforms any of the tools used solely. The EnKF is shown to contribute largely to the ensemble accuracy and dispersion, indicating that the initial conditions uncertainty is dominant. However, it fails to maintain the required dispersion throughout the entire forecast horizon and needs to be supported by a multimodel approach to take into account structural uncertainty. Moreover, the multimodel approach contributes to improving the general forecasting performance and prevents this performance from falling into the model selection pitfall since models differ strongly in their ability. Finally, the use of probabilistic meteorological forcing was found to contribute mostly to long lead time reliability. Particular attention needs to be paid to the combination of the tools, especially in the EnKF tuning to avoid overlapping in error deciphering.

    Consulter sur hess.copernicus.org
  • Fossey, M., & Rousseau, A. N. (2016). Assessing the long-term hydrological services provided by wetlands under changing climate conditions: A case study approach of a Canadian watershed. Journal of Hydrology. https://doi.org/10.1016/j.jhydrol.2016.08.032

    The water content of wetlands represents a key driver of their hydrological services and it is highly dependent on short- and long-term weather conditions, which will change, to some extent, under evolving climate conditions. The impact on stream flows of this critical dynamic component of wetlands remains poorly studied. While hydrodynamic modelling provide a framework to describe the functioning of individual wetland, hydrological modelling offers the opportunity to assess their services at the watershed scale with respect to their type (i.e., isolated or riparian). This study uses a novel approach combining hydrological modelling and limited field monitoring, to explore the effectiveness of wetlands under changing climate conditions. To achieve this, two isolated wetlands and two riparian wetlands, located in the Becancour River watershed within the St Lawrence Lowlands (Quebec, Canada), were monitored using piezometers and stable water isotopes (δD – δ18O) between October 2013 and October 2014. For the watershed hydrology component of this study, reference (1986–2015) and future meteorological data (2041–2070) were used as inputs to the PHYSITEL/HYDROTEL modelling platform. Results obtained from in-situ data illustrate singular hydrological dynamics for each typology of wetlands (i.e., isolated and riparian) and support the hydrological modelling approach used in this study. Meanwhile, simulation results indicate that climate change could affect differently the hydrological dynamics of wetlands and associated services (e.g., storage and slow release of water), including their seasonal contribution (i.e., flood mitigation and low flow support) according to each wetland typology. The methodological framework proposed in this paper meets the requirements of a functional tool capable of anticipating hydrological changes in wetlands at both the land management scale and the watershed management scale. Accordingly, this framework represents a starting point towards the design of effective wetland conservation and/or restoration programs.

  • Fossey, M., Rousseau, A. N., & Savary, S. (2016). Assessment of the impact of spatio-temporal attributes of wetlands on stream flows using a hydrological modelling framework: a theoretical case study of a watershed under temperate climatic conditions. Hydrological Processes, 30(11). https://doi.org/10.1002/hyp.10750

    Wetlands play a significant role on the hydrological cycle, reducing flood peaks through water storage functions and sustaining low flows through slow water release ability. However, their impacts on water resources availability and flood control are mainly driven by wetland type (e.g., isolated wetland –IW- and riparian wetland –RW-) and location within a watershed. Consequently, assessing the qualitative and quantitative impact of wetlands on hydrological regimes has become a relevant issue for scientists as well as stakeholders and decision-makers. In this study, the distributed hydrological model, HYDROTEL, was used to investigate the role and impact of the geographic distribution of isolated and riparian wetlands on stream flows of the Becancour River watershed of the St Lawrence Lowlands, Quebec, Canada. The model was set up and calibrated using available datasets (i.e., DEM, soil, wetland distribution, climate, land cover, and hydrometeorological data for the 1969-2010 period). Different Wetland Theoretical Location Tests (WTLT) were simulated. Results were used to determine whether stream flow parameters, related to peak flows and low flows, were related to: (i) geographic location of wetlands, (ii) typology of wetlands, and (iii) seasonality. The contribution of a particular wetland was assessed using intrinsic characteristics (e.g., surface area, typology) and extrinsic factors (e.g., location in the watershed landscape and seasonality). Through these investigations, the results suggest, to some extent, that both IWs and RWs impact landscape hydrology. The more IWs are located in the upper part of the watershed, the greater their effect on both on high flow damping and low flow support seems to be. The more RWs are connected to a main stream, the greater their effect is. Our modelling results indicate that local landscape conditions may influence the wetland effect; promoting or limiting their efficiency, and thus their impacts on stream flows depend on a combined effect of wetland and landscape attributes.

  • Klein, I. M., Rousseau, A. N., Frigon, A., Freudiger, D., & Gagnon, P. (2016). Evaluation of probable maximum snow accumulation: Development of a methodology for climate change studies. Journal of Hydrology, 537. https://doi.org/10.1016/j.jhydrol.2016.03.031

    Summary Probable maximum snow accumulation (PMSA) is one of the key variables used to estimate the spring probable maximum flood (PMF). A robust methodology for evaluating the PMSA is imperative so the ensuing spring PMF is a reasonable estimation. This is of particular importance in times of climate change (CC) since it is known that solid precipitation in Nordic landscapes will in all likelihood change over the next century. In this paper, a PMSA methodology based on simulated data from regional climate models is developed. Moisture maximization represents the core concept of the proposed methodology; precipitable water being the key variable. Results of stationarity tests indicate that CC will affect the monthly maximum precipitable water and, thus, the ensuing ratio to maximize important snowfall events. Therefore, a non-stationary approach is used to describe the monthly maximum precipitable water. Outputs from three simulations produced by the Canadian Regional Climate Model were used to give first estimates of potential PMSA changes for southern Quebec, Canada. A sensitivity analysis of the computed PMSA was performed with respect to the number of time-steps used (so-called snowstorm duration) and the threshold for a snowstorm to be maximized or not. The developed methodology is robust and a powerful tool to estimate the relative change of the PMSA. Absolute results are in the same order of magnitude as those obtained with the traditional method and observed data; but are also found to depend strongly on the climate projection used and show spatial variability.

  • Gagnon, P., Sheedy, C., Rousseau, A. N., Bourgeois, G., & Chouinard, G. (2016). Integrated assessment of climate change impact on surface runoff contamination by pesticides. Integrated Environmental Assessment and Management, 12(3). https://doi.org/10.1002/ieam.1706

    Pesticide transport by surface runoff depends on climate, agricultural practices, topography, soil characteristics, crop type, and pest phenology. To accurately assess the impact of climate change, these factors must be accounted for in a single framework by integrating their interaction and uncertainty. This paper presents the development and application of a framework to assess the impact of climate change on pesticide transport by surface runoff in southern Quebec (Canada) for the 1981-2040 period. The crop enemies investigated were: weeds for corn (Zea mays); and for apple orchard (Malus pumila), three insect pests (codling moth (Cydia pomonella), plum curculio (Conotrachelus nenuphar) and apple maggot (Rhagoletis pomonella)) and two diseases (apple scab (Venturia inaequalis) and fire blight (Erwinia amylovora)). A total of 23 climate simulations, 19 sites, and 11 active ingredients were considered. The relationship between climate and phenology was accounted for by bioclimatic models of the Computer Centre for Agricultural Pest Forecasting (CIPRA) software. Exported loads of pesticides were evaluated at the edge-of-field scale using the Pesticide Root Zone Model (PRZM), simulating both hydrology and chemical transport. A stochastic model was developed to account for PRZM parameter uncertainty. Results of this study indicate that for the 2011-2040 period, application dates would be advanced from 3 to 7 days on average with respect to the 1981-2010 period. However, the impact of climate change on maximum daily rainfall during the application window is not statistically significant, mainly due to the high variability of extreme rainfall events. Hence for the studied sites and crop enemies considered, climate change impact on pesticide transported in surface runoff is not statistically significant throughout the 2011-2040 period.

  • Rasmussen, P. F. (2016). Assessing the impact of climate change on the frequency of floods in the Red River basin. https://doi.org/10.1080/07011784.2015.1025101

    The impact of climate change on the frequency distribution of spring floods in the Red River basin is investigated. Several major floods in the last couple of decades have caused major damages and inconvenience to people living in the Red River flood plain south of Winnipeg, and have raised the question of whether climate change is at least partly responsible for what appears to be more frequent occurrences of high spring runoff. To investigate whether this is the case, a regression model is used to associate spring peak flow at the US–Canada border with predictor variables that include antecedent precipitation in the previous fall (used as a proxy for soil moisture at freeze-up), winter snow accumulation and spring precipitation. Data from the Coupled Model Intercomparison Project – Phase 5 (CMIP5) are used to derive information about possible changes to the predictor variables in the future, and this information is then used to derive flood distributions for future climate conditions. While mean monthly...

  • Lindenschmidt, K., Das, A., Rokaya, P., & Chu, T. (2016). Ice‐jam flood risk assessment and mapping. Hydrological Processes. https://doi.org/10.1002/hyp.10853

    Abstract In northern regions, river ice‐ jam flooding can be more severe than open‐water flooding causing property and infrastructure damages, loss of human life and adverse impacts on aquatic ecosystems. Very little has been performed to assess the risk induced by ice‐related floods because most risk assessments are limited to open‐water floods. The specific objective of this study is to incorporate ice‐jam numerical modelling tools (e.g. RIVICE, Monte‐Carlo simulation) into flood hazard and risk assessment along the Peace River at the Town of Peace River (TPR) in Alberta, Canada. Adequate historical data for different ice‐jam and open‐water flooding events were available for this study site and were useful in developing ice‐affected stage‐frequency curves. These curves were then applied to calibrate a numerical hydraulic model, which simulated different ice jams and flood scenarios along the Peace River at the TPR. A Monte‐Carlo analysis was then carried out to acquire an ensemble of water level profiles to determine the 1 : 100‐year and 1 : 200‐year annual exceedance probability flood stages for the TPR. These flood stages were then used to map flood hazard and vulnerability of the TPR. Finally, the flood risk for a 200‐year return period was calculated to be an average of $32/m 2 /a ($/m 2 /a corresponds to a unit of annual expected damages or risk). Copyright © 2016 John Wiley & Sons, Ltd.

    Consulter sur onlinelibrary.wiley.com
  • Kames, S., Tardif, J. C., & Bergeron, Y. (2016). Continuous earlywood vessels chronologies in floodplain ring-porous species can improve dendrohydrological reconstructions of spring high flows and flood levels. Journal of Hydrology, 534. https://doi.org/10.1016/j.jhydrol.2016.01.002

    Summary Plants respond to environmental stimuli through changes in growth and development. Characteristics of wood cells such as the cross-sectional area of vessel elements (hereafter referred to as vessels) may store information about environmental factors present at the time of vessel differentiation. The analysis of vessel characteristics therefore offers a different time resolution than annual ring width because vessels in tree rings differentiate within days to a few weeks. Little research has been conducted on the sensitivity of earlywood vessels in ring-porous species in response to flooding. The general objectives of this study were to determine the plasticity of earlywood vessel to high flows and spring flooding in floodplain black ash ( Fraxinus nigra Marsh.) trees and to assess the utility of developing continuous earlywood vessel chronologies in dendrohydrological reconstruction. In contrast, most dendrohydrological studies until now have mainly used vessel anomalies (flood rings) as discrete variables to identify exceptional flood events. The study area is located in the boreal region of northwestern Quebec. Vessel and ring-width chronologies were generated from F. nigra trees growing on the floodplain of Lake Duparquet. Spring discharge had among all hydro-climatic variables the strongest impact on vessel formation and this signal was coherent spatially and in the frequency domain. The mean vessel area chronology was significantly and negatively correlated to discharge and both the linearity and the strength of this association were unique. In floodplain F. nigra trees, spring flooding promoted the formation of more abundant but smaller earlywood vessels. Earlywood vessels chronologies were also significantly associated with other hydrological indicators like Lake Duparquet’s ice break-up date and both ice-scar frequency and height chronologies. These significant relationships stress the utility of developing continuous vessels chronologies for hydrological reconstructions prior to instrumental data. Continuous earlywood vessel chronologies may also be useful in determining the impact of altered hydrological regime in floodplain habitat regulated by spring floods. Future research should involve quantifying the impact of high flows and flooding on other cell constituents and also determining the plasticity and utility of continuous anatomical series in floodplain diffuse-porous species.

  • Hauer, F. R., Locke, H., Dreitz, V. J., Hebblewhite, M., Lowe, W. H., Muhlfeld, C. C., Nelson, C. R., Proctor, M. F., & Rood, S. B. (2016). Gravel-bed river floodplains are the ecological nexus of glaciated mountain landscapes. Science Advances, 2(6). https://doi.org/10.1126/sciadv.1600026

    Gravel-bed rivers are disproportionately important to regional biodiversity, species interactions, connectivity, and conservation. , Gravel-bed river floodplains in mountain landscapes disproportionately concentrate diverse habitats, nutrient cycling, productivity of biota, and species interactions. Although stream ecologists know that river channel and floodplain habitats used by aquatic organisms are maintained by hydrologic regimes that mobilize gravel-bed sediments, terrestrial ecologists have largely been unaware of the importance of floodplain structures and processes to the life requirements of a wide variety of species. We provide insight into gravel-bed rivers as the ecological nexus of glaciated mountain landscapes. We show why gravel-bed river floodplains are the primary arena where interactions take place among aquatic, avian, and terrestrial species from microbes to grizzly bears and provide essential connectivity as corridors for movement for both aquatic and terrestrial species. Paradoxically, gravel-bed river floodplains are also disproportionately unprotected where human developments are concentrated. Structural modifications to floodplains such as roads, railways, and housing and hydrologic-altering hydroelectric or water storage dams have severe impacts to floodplain habitat diversity and productivity, restrict local and regional connectivity, and reduce the resilience of both aquatic and terrestrial species, including adaptation to climate change. To be effective, conservation efforts in glaciated mountain landscapes intended to benefit the widest variety of organisms need a paradigm shift that has gravel-bed rivers and their floodplains as the central focus and that prioritizes the maintenance or restoration of the intact structure and processes of these critically important systems throughout their length and breadth.

    Consulter sur www.science.org
  • Whitfield, P. H., & Pomeroy, J. W. (2016). Changes to flood peaks of a mountain river: implications for analysis of the 2013 flood in the Upper Bow River, Canada. Hydrological Processes, 30(25). https://doi.org/10.1002/hyp.10957

    The mountain headwater Bow River at Banff, Alberta, Canada was subject to a large flood in June 2013, over which considerable debate has ensued regarding its probability of occurrence. It is therefore instructive to consider what information long term streamflow discharge records provide about environmental change in the Upper Bow River basin above Banff. Though protected as part of Banff National Park, since 1885, the basin has experienced considerable climate and land cover changes, each of which has the potential to impact observations, and hence the interpretations of flood probability. The Bow River at Banff hydrometric station is one of Canada's longest operating reference hydrological basin network stations and so has great value for assessing changes in flow regime over time. Furthermore, the station measures a river that provides an extremely important water supply for Calgary and irrigation district downstream and so is of great interest for assessing regional water security. These records were examined for changes in several flood attributes and to determine whether flow changes may have been related to landscape change within the basin as caused by forest fires, conversion from grasslands to forest with fire suppression, and regional climate variations and/or trends. Floods in the Upper Bow River are generated by both snowmelt and rain-on-snow (ROS) events, the latter type which include floods events generated by spatially and temporally large storms such as occurred in 2013. The two types of floods also have different frequency characteristics. Snowmelt and ROS flood attributes were not correlated significantly with any climate index or with burned area except that snowmelt event duration correlated negatively to the Pacific Decadal Oscillation. While there is a significant negative trend in all floods over the past 100years, when separated based on generating process, neither snowmelt floods nor large ROS floods associated with mesoscale storms show any trends over time. Despite extensive changes to the landscape of the basin and in within the climate system, the flood regime remains unchanged, something identified at smaller scales in the region but never at larger scales.

  • Peters, D. L., Caissie, D., Monk, W. A., Rood, S. B., & St-Hilaire, A. (2016). An ecological perspective on floods in Canada. https://doi.org/10.1080/07011784.2015.1070694

    This review presents a summary of the influences of floods on river ecology, both instream and on the adjacent floodplain, mostly in a Canadian context. It emphasizes that ecological impacts and benefits can be highly dependent on flood-generation processes and their magnitude and timing. In Canada, floods can occur under open-water or ice-influenced river conditions. The ecological impacts of floods generated from ice jamming are particularly relevant in Canadian ecosystems due to the potentially higher water levels produced and suspended sediment concentrations that can be detrimental to instream aquatic habitat, but beneficial to floodplains. Large floods provide a major source of physical disturbance. Moderate floods with shorter return periods can be beneficial to aquatic habitats by providing woody debris that contributes to habitat complexity and diversity, by flushing fine sediments and by providing important food sources from terrestrial origins. Floods also influence water-quality variables such...

  • Mandal, S., Srivastav, R., & Simonovic, S. P. (2016). Use of beta regression for statistical downscaling of precipitation in the Campbell River basin, British Columbia, Canada. Journal of Hydrology, 538. https://doi.org/10.1016/j.jhydrol.2016.04.009

    Summary Impacts of global climate change on water resources systems are assessed by downscaling coarse scale climate variables into regional scale hydro-climate variables. In this study, a new multisite statistical downscaling method based on beta regression (BR) is developed for generating synthetic precipitation series, which can preserve temporal and spatial dependence along with other historical statistics. The beta regression based downscaling method includes two main steps: (1) prediction of precipitation states for the study area using classification and regression trees, and (2) generation of precipitation at different stations in the study area conditioned on the precipitation states. Daily precipitation data for 53years from the ANUSPLIN data set is used to predict precipitation states of the study area where predictor variables are extracted from the NCEP/NCAR reanalysis data set for the same interval. The proposed model is applied to downscaling daily precipitation at ten different stations in the Campbell River basin, British Columbia, Canada. Results show that the proposed downscaling model can capture spatial and temporal variability of local precipitation very well at various locations. The performance of the model is compared with a recently developed non-parametric kernel regression based downscaling model. The BR model performs better regarding extrapolation compared to the non-parametric kernel regression model. Future precipitation changes under different GHG (greenhouse gas) emission scenarios also projected with the developed downscaling model that reveals a significant amount of changes in future seasonal precipitation and number of wet days in the river basin.

  • Islam, S. ul, & Déry, S. J. (2016). Evaluating uncertainties in modelling the snow hydrology of the Fraser River Basin, British Columbia, Canada. Hydrology and Earth System Sciences, 21(3). https://doi.org/10.5194/hess-21-1827-2017

    This study evaluates predictive uncertainties in the snow hydrology of the Fraser River Basin(FRB) of British Columbia(BC), Canada, using the Variable Infiltration Capacity(VIC) model forced with several high-resolution gridded climate datasets. These datasets include the Canadian Precipitation Analysis and the thin-plate smoothing splines(ANUSPLIN), North American Regional Reanalysis(NARR), University of Washington(UW) and Pacific Climate Impacts Consortium(PCIC) gridded products. Uncertainties are evaluated at different stages of the VIC implementation, starting with the driving datasets, optimization of model parameters, and model calibration during cool and warm phases of the Pacific Decadal Oscillation(PDO). The inter-comparison of the forcing datasets (precipitation and air temperature) and their VIC simulations (snow water equivalent – SWE – and runoff) reveals widespread differences over the FRB, especially in mountainous regions. The ANUSPLIN precipitation shows a considerable dry bias in the Rocky Mountains, whereas the NARR winter air temperature is 2°C warmer than the other datasets over most of the FRB. In the VIC simulations, the elevation-dependent changes in the maximum SWE(maxSWE) are more prominent at higher elevations of the Rocky Mountains, where the PCIC-VIC simulation accumulates too much SWE and ANUSPLIN-VIC yields an underestimation. Additionally, at each elevation range, the day of maxSWE varies from 10to 20days between the VIC simulations. The snow melting season begins early in the NARR-VIC simulation, whereas the PCIC-VIC simulation delays the melting, indicating seasonal uncertainty in SWE simulations. When compared with the observed runoff for the Fraser River main stem at Hope, BC, the ANUSPLIN-VIC simulation shows considerable underestimation of runoff throughout the water year owing to reduced precipitation in the ANUSPLIN forcing dataset. The NARR-VIC simulation yields more winter and spring runoff and earlier decline of flows in summer due to a nearly 15-day earlier onset of the FRB springtime snowmelt. Analysis of the parametric uncertainty in the VIC calibration process shows that the choice of the initial parameter range plays a crucial role in defining the model hydrological response for the FRB. Furthermore, the VIC calibration process is biased toward cool and warm phases of the PDO and the choice of proper calibration and validation time periods is important for the experimental setup. Overall the VIC hydrological response is prominently influenced by the uncertainties involved in the forcing datasets rather than those in its parameter optimization and experimental setups.

  • Gurrapu, S., St-Jacques, J.-M., Sauchyn, D. J., & Hodder, K. R. (2016). The Influence of the Pacific Decadal Oscillation on Annual Floods in the Rivers of Western Canada. Journal of The American Water Resources Association, 52(5). https://doi.org/10.1111/1752-1688.12433

    We analyzed annual peak flow series from 127 naturally flowing or naturalized streamflow gauges across western Canada to examine the impact of the Pacific Decadal Oscillation (PDO) on annual flood risk, which has been previously unexamined in detail. Using Spearman's rank correlation ρ and permutation tests on quantile-quantile plots, we show that higher magnitude floods are more likely during the negative phase of the PDO than during the positive phase (shown at 38% of the stations by Spearman's rank correlations and at 51% of the stations according to the permutation tests). Flood frequency analysis (FFA) stratified according to PDO phase suggests that higher magnitude floods may also occur more frequently during the negative PDO phase than during the positive phase. Our results hold throughout much of this region, with the upper Fraser River Basin, the Columbia River Basin, and the North Saskatchewan River Basin particularly subject to this effect. Our results add to other researchers' work questioning the wholesale validity of the key assumption in FFA that the annual peak flow series at a site is independently and identically distributed. Hence, knowledge of large-scale climate state should be considered prior to the design and construction of infrastructure.

  • Gachon, P., Bussières, L., Gosselin, P., Raphoz, M., Bustinza, R., Martin, P. H., Dueymes, G., Gosselin, D., Labrecque, S., Jeffers, S., & Yagouti, A. (2016). Guide to identifying alert thresholds for heat waves in Canada based on evidence. https://www.semanticscholar.org/paper/Guide-to-identifying-alert-thresholds-for-heat-in-Gachon-Bussi%C3%A8res/84e8d53a66ed10081df359e274c2e800a99c1d4e

    Among natural-disaster risks, heat waves are responsible for a large number of deaths, diseases and economic losses around the world. As they will increase in severity, duration and frequency over the decades to come within the context of climate change, these extreme events constitute a genuine danger to human health, and heat-warning systems are strongly recommended by public health authorities to reduce this risk of diseases and of excessive mortality and morbidity. Thus, evidence-based public alerting criteria are needed to reduce impacts on human health before and during persistent hot weather conditions. The goal of this guide is to identify alert thresholds for heat waves in Canada based on evidence, and to propose an approach for better defining heat waves in the Canadian context in order to reduce the risks to human health and contribute to the well-being of Canadians. This guide is the result of the collaboration among various research and public institutions working on: 1) meteorological and climate aspects, i.e. the Meteorological Service of Canada (MSC, Environment and Climate Change Canada), and the ESCER centre at the Universite du Quebec a Montreal, and 2) public health, i.e. Health Canada and the Institut National de Sante Publique du Quebec.

    Consulter sur www.semanticscholar.org
  • 1
  • 2
  • Page 1 de 2
RIS

Format recommandé pour la plupart des logiciels de gestion de références bibliographiques

BibTeX

Format recommandé pour les logiciels spécialement conçus pour BibTeX

Flux web personnalisé
Dernière mise à jour depuis la base de données : 2025-09-20 06 h 52 (UTC)

Explorer

Axes du RIISQ

  • 1 - aléas, vulnérabilités et exposition (9)
  • 2 - enjeux de gestion et de gouvernance (6)
  • 3 - aspects biopsychosociaux (12)
  • 4 - réduction des vulnérabilités (7)
  • 5 - aide à la décision, à l’adaptation et à la résilience (10)

Enjeux majeurs

  • Prévision, projection et modélisation (6)
  • Inégalités et événements extrêmes (5)
  • Risques systémiques (5)

Lieux

  • Canada (25)
  • Québec (province) (10)
  • États-Unis (1)

Secteurs et disciplines

  • Nature et Technologie
  • Société et Culture (11)
  • Santé (8)

Types d'événements extrêmes

  • Évènements liés au froid (neige, glace) (21)
  • Inondations et crues (19)
  • Feux de forêts (2)

Types d'inondations

  • Fluviales (10)
  • Par embâcle (3)
  • Pluviales (1)

Type de ressource

  • Article de revue (32)
  • Rapport (1)

Année de publication

  • Entre 2000 et 2025
    • Entre 2010 et 2019
      • 2016

Langue de la ressource

  • Anglais (6)

Explorer

UQAM - Université du Québec à Montréal

  • Veille bibliographique sur les inondations
  • bibliotheques@uqam.ca

Accessibilité Web