Votre recherche
Résultats 28 ressources
-
Abstract Large‐scale ice phenology studies have revealed overall patterns of later freeze, earlier breakup, and shorter duration of ice in the Northern Hemisphere. However, there have been few studies regarding the trends, including their spatial patterns, in ice phenology for individual waterbodies on a local or small regional scale, although the coherence of ice phenology has been shown to decline rapidly in the first few hundred kilometers. In this study, we extracted trends, analyzed affecting factors, and investigated relevant spatial patterns for ice breakup date time series at 10 locations with record length ≥90 years in south‐central Ontario, Canada. Wavelet methods, including the multiresolution analysis (MRA) method for nonlinear trend extraction and the wavelet coherence (WTC) method for identifying the teleconnections between large‐scale climate modes and ice breakup date, are proved to be effective in ice phenology analysis. Using MRA method, the overall trend of ice breakup date time series (1905–1991) varied from earlier ice breakup to later ice breakup, then to earlier breakup again from south to north in south‐central Ontario. Ice breakup date is closely correlated with air temperature during certain winter/spring months, as well as the last day with snow on the ground and number of snow‐on‐ground days. The influences of solar activity and Pacific North American on ice breakup were comparatively uniform across south‐central Ontario, while those of El Niño–Southern Oscillation, North Atlantic Oscillation, and Arctic Oscillation on ice phenology changed with distance of 50–100 km in the north‐south direction. , Key Points Wavelet methods are effective in ice phenology analysis in south‐central Ontario Coherence of ice breakup changes with distance of 50–100 km from south to north Ice breakup in Ontario is affected by solar activity, ENSO, PNA, NAO, and AO
-
This work explores the performances of the hydrologic model Hydrotel, applied to 36 catchments located in the Province of Quebec, Canada. A local calibration (each catchment taken individually) scheme and a global calibration (a single parameter set sought for all catchments) scheme are compared in a differential split-sample test perspective. Such a methodology is useful to gain insights on a model’s skills under different climatic conditions, in view of its use for climate change impact studies. The model was calibrated using both schemes on five non-continuous dry and cold years and then evaluated on five dissimilar humid and warm years. Results indicate that, as expected, local calibration leads to better performances than the global one. However, global calibration achieves satisfactory simulations while producing a better temporal robustness (i.e., model transposability to periods with different climatic conditions). Global calibration, in opposition to local calibration, thus imposes spatial consis...
-
The contemporary definition of integrated water resources management (IWRM) is introduced to promote a holistic approach in water engineering practices. IWRM deals with planning, design and operation of complex systems in order to control the quantity, quality, temporal and spatial distribution of water with the main objective of meeting human and ecological needs and providing protection from water related disasters. This paper examines the existing decision making support in IWRM practice, analyses the advantages and limitations of existing tools, and, as a result, suggests a generic multi-method modeling framework that has the main goal to capture all structural complexities of, and interactions within, a water resources system. Since the traditional tools do not provide sufficient support, this framework uses multi-method simulation technique to examine the codependence between water resources system and socioeconomic environment. Designed framework consists of (i) a spatial database, (ii) a traditional process-based model to represent the physical environment and changing conditions, and (iii) an agent-based spatially explicit model of socio-economic environment. The multi-agent model provides for building virtual complex systems composed of autonomous entities, which operate on local knowledge, possess limited abilities, affect and are affected by local environment, and thus, enact the desired global system behavior. Agent-based model is used in the presented work to analyze spatial dynamics of complex physical-social-economic-biologic systems. Based on the architecture of the generic multi-method modeling framework, an operational model for the Upper Thames River basin, Southwestern Ontario, Canada, is developed in cooperation with the local conservation authority. Six different experiments are designed by combining three climate and two socio-economic scenarios to analyze spatial dynamics of a complex physical-social-economic system of the Upper Thames River basin. Obtained results show strong dependence between changes in hydrologic regime, in this case surface runoff and groundwater recharge rates, and regional socio-economic activities.
-
Summary Projected climate change effects on streamflow are investigated for the 2041–2070 horizon following the SRES A2 emissions scenario over two snowmelt-dominated catchments in Canada. A 16-member ensemble of SWAT hydrological model (HM) simulations, based on a comprehensive ensemble of the Canadian Regional Climate Model (CRCM) simulations driven by two global climate models (GCMs), with five realizations of the Canadian CGCM3 and three realizations of the German ECHAM5 is established per catchment. This study aims to evaluate, once model bias has been removed by statistical post-processing (SP), how the RCM-simulated climate changes differ from those of the parent GCMs, and how they affect the assessment of climate change-induced hydrological impacts at the catchment scale. The variability of streamflow caused by the use of different SP methods (mean-based versus distribution-based) within each statistical post-processing pathway of climate model outputs (bias correction versus perturbation) is also evaluated, as well as the uncertainty of natural climate variability. The simulations cover 1971–2000 in the reference period and 2041–2070 in the future period. For a set of criteria, results based on raw and statistically post-processed model outputs for the reference climate are compared with observations. This process demonstrates that SP is important not only for GCMs outputs, but also for CRCM outputs. SP leads to a high level of agreement between the CRCM and the driving GCMs in reproducing patterns of observed climate. The ensemble spread of the climate change signal on streamflow is large and varies with catchments and hydrological periods (winter/summer flows). The results of various hydrological indicators show that most of the uncertainty arises from the natural climate variability followed by the statistical post-processing. The uncertainty linked to the choice of statistical pathway is much larger than that associated with the choice of the method in quantifying the hydrological impacts. We find that the incorporation of dynamical downscaling of global models through the CRCM as an intermediate step in the GCM–RCM–SP–HM model chain does not lead to considerable differences in the assessment of the climate change impacts on streamflow for the study catchments.
-
Several top‐down and bottom‐up forces have been put forward to explain variable infestation rates of zooplankton by epibionts. Among top‐down forces, fish predation affects epibiont prevalence on zooplanktonic organisms, either by eliminating more conspicuous, heavily burdened individuals, or by reducing population size of zooplankton hosts, with consequences for substrate availability for epibionts. However, detailed experimental‐based information on the effects of top‐down forces is still lacking. Among bottom‐up forces, light can potentially control populations of photosynthetic epibionts. Therefore, both changes in light penetration in the water column and the vertical position of hosts in the water column could affect the photic conditions in which epibionts live and could thus control their population growth. We tested experimentally the hypothesis that both light limitation and fish predation affect epibiont burden on zooplankton. Moreover, we also tested the hypothesis that zooplanktivorous fish affect the prevalence and burden of the epibiotic alga Colacium sp. (Euglenida) on zooplankton not only by direct predation, but also by affecting the vertical distribution of zooplankton. We analyzed Colacium burden on two zooplankton genera that responded differently to the presence of zooplanktivorous fish by altering their daytime vertical distributions, thus exposing photosynthetic epibionts to different light conditions. Colacium burden on the two zooplankton genera was also compared between enclosures with different degrees of light limitation. Our results suggest that (1) ambient light limitation has the potential to reduce the burden of photosynthetic epibionts on zooplankton in natural conditions, and (2) zooplankton behavior (e.g., daytime refuge use to escape fish predation) can reduce the burden by exposing photosynthetic epibionts to suboptimal light conditions.
-
Mathematical modelling is a well-accepted framework to evaluate the effects of wetlands on stream flow and watershed hydrology in general. Although the integration of wetland modules into a distributed hydrological model represents a cost-effective way to make this assessment, the added value brought by landscape-specific modules to a model's ability to replicate basic hydrograph characteristics remains unclear. The objectives of this paper were to: (i) present the adaptation of PHYSITEL (a GIS) to parameterize isolated and riparian wetlands; (ii) describe the integration of specific isolated wetland and riparian wetland modules into HYDROTEL, a distributed hydrological model; and (iii) evaluate the performance of the updated modelling platform with respect to the capacity of replicating various hydrograph characteristics. To achieve this, two sets of simulations were performed (with and without wetland modules) and the added-value was assessed at three river segments of the Becancour River watershed, Quebec, Canada, using six general goodness-of-fit indicators (GOFIs) and fourteen water flow criteria (WFC). A sensitivity analysis of the wetland module parameters was performed to characterize their impact on stream flows of the modelled watershed. Results of this study indicate that: (i) integration of specific wetland modules can slightly increase the capacity of HYDROTEL to replicate basic hydrograph characteristics and (ii) the updated modelling platform allows for the explicit assessment of the impact of wetlands (e.g., typology, location) on watershed hydrology.
-
Projections from the Canadian Regional Climate Model (CRCM) for the southern part of the province of Québec, Canada, suggest an increase in extreme precipitation events for the 2050 horizon (2041–2070). The main goal of this study consisted in a quantitative and qualitative assessment of the impact of the 20 % increase in rainfall intensity that led, in the summer of 2013, to overflows in the “Rolland-Therrien” combined sewer system in the city of Longueuil, Canada. The PCSWMM 2013 model was used to assess the sensitivity of this overflow under current (2013) and future (2050) climate conditions. The simulated quantitative variables (peak flow, QCSO, and volume discharged, VD) served as the basis for deriving ecotoxicological risk indices and event fluxes (EFs) transported to the St. Lawrence (SL) River. Results highlighted 15 to 500 % increases in VD and 13 to 148 % increases in QCSO by 2050 (compared to 2013), based on eight rainfall events measured from May to October. These results show that (i) the relationships between precipitation and combined sewer overflow variables are not linear and (ii) the design criteria for current hydraulic infrastructure must be revised to account for the impact of climate change (CC) arising from changes in precipitation regimes. EFs discharged into the SL River will be 2.24 times larger in the future than they are now (2013) due to large VDs resulting from CC. This will, in turn, lead to excessive inputs of total suspended solids (TSSs) and tracers for numerous urban pollutants (organic matter and nutrients, metals) into the receiving water body. Ecotoxicological risk indices will increase by more than 100 % by 2050 compared to 2013. Given that substantial VDs are at play, and although CC scenarios have many sources of uncertainty, strategies to adapt this drainage network to the effects of CC will have to be developed.
-
AbstractIn this study, high-resolution climate projections over Ontario, Canada, are developed through an ensemble modeling approach to provide reliable and ready-to-use climate scenarios for assessing plausible effects of future climatic changes at local scales. The Providing Regional Climates for Impacts Studies (PRECIS) regional modeling system is adopted to conduct ensemble simulations in a continuous run from 1950 to 2099, driven by the boundary conditions from a HadCM3-based perturbed physics ensemble. Simulations of temperature and precipitation for the baseline period are first compared to the observed values to validate the performance of the ensemble in capturing the current climatology over Ontario. Future projections for the 2030s, 2050s, and 2080s are then analyzed to help understand plausible changes in its local climate in response to global warming. The analysis indicates that there is likely to be an obvious warming trend with time over the entire province. The increase in average tempera...
-
AbstractTrends in Canada’s climate are analyzed using recently updated data to provide a comprehensive view of climate variability and long-term changes over the period of instrumental record. Trends in surface air temperature, precipitation, snow cover, and streamflow indices are examined along with the potential impact of low-frequency variability related to large-scale atmospheric and oceanic oscillations on these trends. The results show that temperature has increased significantly in most regions of Canada over the period 1948–2012, with the largest warming occurring in winter and spring. Precipitation has also increased, especially in the north. Changes in other climate and hydroclimatic variables, including a decrease in the amount of precipitation falling as snow in the south, fewer days with snow cover, an earlier start of the spring high-flow season, and an increase in April streamflow, are consistent with the observed warming and precipitation trends. For the period 1900–2012, there are suffici...
-
Summary Across the southern Canadian Prairies, annual precipitation is relatively low (200–400mm) and periodic water deficits limit economic and environmental productivity. Rapid population growth, economic development and climate change have exposed this region to increasing vulnerability to hydrologic drought. There is high demand for surface water, streamflow from the Rocky Mountains in particular. This paper describes the application of dendrohydrology to water resource management in this region. Four projects were initiated by the sponsoring organizations: a private utility, an urban municipality and two federal government agencies. The fact that government and industry would initiate and fund tree-ring research indicates that practitioners recognize paleohydrology as a legitimate source of technical support for water resource planning and management. The major advantage of tree-rings as a proxy of annual and seasonal streamflow is that the reconstructions exceed the length of gauge records by at least several centuries. The extent of our network of 180 tree-ring chronologies, spanning AD 549–2013 and ∼20° of latitude, with a high density of sites in the headwaters of the major river basins, enables us to construct large ensembles of tree-ring reconstructions as a means of expressing uncertainty in the inference of streamflow from tree rings. We characterize paleo-droughts in terms of modern analogues, translating the tree-ring reconstructions from a paleo-time scale to the time frame in which engineers and planners operate. Water resource managers and policy analysts have used our paleo-drought scenarios in their various forms to inform and assist drought preparedness planning, a re-evaluation of surface water apportionment policy and an assessment of the reliability of urban water supply systems.
-
Floods have potentially devastating consequences on populations, industries and environmental systems. They often result from a combination of effects from meteorological, physiographic and anthropogenic natures. The analysis of flood hazards under a multivariate perspective is primordial to evaluate several of the combined factors. This study analyzes spring flood-causing mechanisms in terms of the occurrence, frequency, duration and intensity of precipitation as well as temperature events and their combinations previous to and during floods using frequency analysis as well as a proposed multivariate copula approach along with hydrometeorological indices. This research was initiated over the Richelieu River watershed (Quebec, Canada), with a particular emphasis on the 2011 spring flood, constituting one of the most damaging events over the last century for this region. Although some work has already been conducted to determine certain causes of this record flood, the use of multivariate statistical analysis of hydrologic and meteorological events has not yet been explored. This study proposes a multivariate flood risk model based on fully nested Archimedean Frank and Clayton copulas in a hydrometeorological context. Several combinations of the 2011 Richelieu River flood-causing meteorological factors are determined by estimating joint and conditional return periods with the application of the proposed model in a trivariate case. The effects of the frequency of daily frost/thaw episodes in winter, the cumulative total precipitation fallen between the months of November and March and the 90th percentile of rainfall in spring on peak flow and flood duration are quantified, as these combined factors represent relevant drivers of this 2011 Richelieu River record flood. Multiple plausible and physically founded flood-causing scenarios are also analyzed to quantify various risks of inundation.
-
Climate variability is recognized as an important influence on the availability of water throughout Canada, and projected climate change is anticipated to alter the amount, timing and distribution of water. This is Part II of a three-part (Parts I and III, this issue) analysis of water availability in Canada. Part II surveys current research, primarily Canadian in origin, on historical trends in climate and hydrologic indicators relevant to assessing water availability. Information on hydro-climate trends is not evenly distributed across Canada. Hydrologic trend research focuses on the North, British Columbia and the Prairies (Saskatchewan) with some research in Quebec, very little in Ontario and minimal analysis for Atlantic Canada. Overall, there is less research on trends in climatological indicators (drought, evapotranspiration, soil moisture); generally, the focus is on the Prairies. Hydrologic trends from basin-scale case studies are reported but inter-comparison is constrained by different periods ...
-
Climate variability influences the availability of water resources throughout Canada, and projected climate change is anticipated to affect future water availability. This is the first paper of a three-part analysis of water availability indicators in Canada (Parts II and III, this issue). The concept of water availability has been described in different ways in the literature. In Part I, the various approaches for estimating water availability are reviewed and compared, with a focus on Canadian studies. Global examples are used when necessary. The approaches to estimate water availability are organized into three categories: (1) climate-based indicators, (2) hydrology-based indicators and (3) water demand/supply-based indicators. Climate-based indicators use variables such as precipitation, and potential or actual evapotranspiration to calculate water budgets. Widely used meteorological drought indices that calculate moisture surpluses and deficits are also examined. Hydrology-based indicators focus on v...
-
Although numerous studies have looked at the long-term trend of the temporal variability of winter temperature and precipitation in southern Quebec, no study has focused on the shifts in series means and the dependence between these two types of climate variables associated with this long-term trend. To fill these gaps, we used the Lombard method to detect the shifts in mean values and the copula method to detect any change in dependence between extreme (maximum and minimum) temperatures and precipitation (snow and rain) over the periods 1950–2000 (17 stations) and 1950–2010 (7 stations). During these two periods, the shifts in mean values of temperature and precipitation were recorded at less than half of the stations. The only significant change observed at the provincial scale is a decrease in the amount of snowfall, which occurred in many cases during the 1970s. This decrease affected stations on the north shore (continental temperate climate) more strongly than stations on the south shore (maritime temperate climate) of the St Lawrence River. However, this decrease in the amount of snowfall had no impact on the dependence over time between temperature and precipitation as snow.