Votre recherche
Résultats 2 ressources
-
Wetlands play an important role in preventing extreme low flows in rivers and groundwater level drawdowns during drought periods. This hydrological function could become increasingly important under a warmer climate. Links between peatlands, aquifers, and rivers remain inadequately understood. The objective of this study was to evaluate the hydrologic functions of the Lanoraie peatland complex in southern Quebec, Canada, under different climate conditions. This peatland complex has developed in the beds of former fluvial channels during the final stages of the last deglaciation. The peatland covers a surface area of ~76 km2 and feeds five rivers. Numerical simulations were performed using a steady-state groundwater flow model. Results show that the peatland contributes on average to 77% of the mean annual river base flow. The peatland receives 52% of its water from the aquifer. Reduced recharge scenarios (−20 and −50% of current conditions) were used as a surrogate of climate change. With these scenarios, the simulated mean head decreases by 0.6 and 1.6 m in the sand. The mean river base flow decreases by 16 and 41% with the two scenarios. These results strongly underline the importance of aquifer-peatland-river interactions at the regional scale. They also point to the necessity of considering the entire hydrosystem in conservation initiatives.
-
Disasters such as floods, storms, heatwaves and droughts can have enormous implications for health, the environment and economic development. In this article, we address the question of how climate change might have influenced the impact of weather-related disasters. This relation is not straightforward, since disaster burden is not influenced by weather and climate events alone—other drivers are growth in population and wealth, and changes in vulnerability. We normalized disaster impacts, analyzed trends in the data and compared them with trends in extreme weather and climate events and vulnerability, following a 3 by 4 by 3 set-up, with three disaster burden categories, four regions and three extreme weather event categories. The trends in normalized disaster impacts show large differences between regions and weather event categories. Despite these variations, our overall conclusion is that the increasing exposure of people and economic assets is the major cause of increasing trends in disaster impacts. This holds for long-term trends in economic losses as well as the number of people affected. We also found similar, though more qualitative, results for the number of people killed; in all three cases, the role played by climate change cannot be excluded. Furthermore, we found that trends in historic vulnerability tend to be stable over time, despite adaptation measures taken by countries. Based on these findings, we derived disaster impact projections for the coming decades. We argue that projections beyond 2030 are too uncertain, not only due to unknown changes in vulnerability, but also due to increasing non-stationarities in normalization relations.