Votre recherche
Résultats 27 ressources
-
Using a new data set on annual deaths from disasters in 73 nations from 1980 to 2002, this paper tests several hypotheses concerning natural-disaster mitigation. Though richer nations do not experience fewer natural disasters than poorer nations, richer nations do suffer less death from disaster. Economic development provides implicit insurance against nature's shocks. Democracies and nations with higher-quality institutions suffer less death from natural disaster. Because climate change is expected to increase the frequency of natural disasters such as floods, these results have implications for the incidence of global warming.
-
Abstract. Natural hazards can be seen as a function of a specific natural process and human (economic) activity. Whereby the bulk of literature on natural hazard management has its focus on the natural process, an increasing number of scholars is emphasizing the importance of human activity in this context. Existing literature has identified certain socio-economic factors that determine the impact of natural disasters on society. The purpose of this paper is to highlight the effects of the institutional framework that influences human behavior by setting incentives and to point out the importance of institutional vulnerability. Results from an empirical investigation of large scale natural disasters between 1984 and 2004 show that countries with better institutions experience less victims and lower economic losses from natural disasters. In addition, the results suggest a non-linear relationship between economic development and economic disaster losses. The suggestions in this paper have implications for the discussion on how to deal with the adverse effects of natural hazards and how to develop efficient adaption strategies.
-
Prewhitening has been used to eliminate the influence of serial correlation on the Mann‐Kendall (MK) test in trend‐detection studies of hydrological time series. However, its ability to accomplish such a task has not been well documented. This study investigates this issue by Monte Carlo simulation. Simulated time series consist of a linear trend and a lag 1 autoregressive (AR(1)) process with a noise. Simulation results demonstrate that when trend exists in a time series, the effect of positive/negative serial correlation on the MK test is dependent upon sample size, magnitude of serial correlation, and magnitude of trend. When sample size and magnitude of trend are large enough, serial correlation no longer significantly affects the MK test statistics. Removal of positive AR(1) from time series by prewhitening will remove a portion of trend and hence reduces the possibility of rejecting the null hypothesis while it might be false. Contrarily, removal of negative AR(1) by prewhitening will inflate trend and leads to an increase in the possibility of rejecting the null hypothesis while it might be true. Therefore, prewhitening is not suitable for eliminating the effect of serial correlation on the MK test when trend exists within a time series.
-
Land surface hydrology controls runoff production and the associated transport of sediments, and a wide variety of anthropogenic organic chemicals, and nutrients from upland landscape areas and hillslopes to streams and other water bodies. Based on interactions between landscape characteristics and precipitation inputs, watersheds respond differently to different climatic inputs (e.g. precipitation and solar radiation). This study compares the hydrologic responses of the MidAtlantic watersheds, and identifies the landscape and climatic descriptors that control those responses. Our approach was to select representative watersheds from the Mid-Atlantic region, group the watersheds by physiographic province and ecoregion, and then collect landscape, climate, and hydrologic response descriptor data for each selected watershed. For example, we extracted extensive landscape descriptor data from soil, land use and land cover, and digital elevation model geographic information system (GIS) databases. After sufficient data was collected, we conducted a variety of studies to determine how different landscape and climatic descriptors influence the hydrologic response of Mid-Atlantic watersheds. This report is comprised of four main parts. Part I describes the selection of the representative study watersheds and the determination of representative physical landscape descriptors for each watershed using geographic information system analysis tools. Part II characterizes the climate and associated hydrologic responses of the study watersheds. To select climate descriptors that are good predictors of hydrologic response, we examined a large number of candidate descriptors. Based on our examination, we selected dryness index and mean monthly rainfall as the best hydrologic response predictors. In Part II, we also present the results of our study hydrologic response comparisons of the study watersheds using a water balance approach. The water balance approach was based on comparisons of precipitation, streamflow, and evapotranspiration at annual, monthly, and daily time scales. These comparisons revealed that elevation and latitudinal position strongly influence hydrologic response. The results also showed that mountainous watersheds of the Appalachian Plateau, Ridge and Valley, and Blue Ridge Physiographic Provinces have more streamflow and less evapotranspiration than watersheds located in the Piedmont Province, and that snowmelt contributes a large portion of streamflow. Part III presents relationships we derived between landscape-climatic descriptors and the hydrologic response descriptors. Flow duration indices (Q1...Q95) were used to represent the hydrologic responses of the study watersheds. In Part III, we also present comparisons of the hydrologic responses of the study watersheds at high flow condition, represented by the Q1 index, medium flow condition represented by the Q50 index, and low flow condition represented by the Q95 index. These comparisons revealed that: the Appalachian Plateau, ridge-dominated Ridge and Valley, and Blue Ridge watersheds have the highest Q1 and Q50 indices; the valley-dominated Ridge and Valley watersheds have the lowest Q50 index, and the Piedmont watersheds have the lowest Q1 index and a relatively high Q95 index. Finally, Part IV discusses some of the implications of the study results for watershed management. We also present applications of the research for hydrologic modeling and watershed assessment.
-
1. This review is presented as a broad synthesis of riverine landscape diversity, beginning with an account of the variety of landscape elements contained within river corridors. Landscape dynamics within river corridors are then examined in the context of landscape evolution, ecological succession and turnover rates of landscape elements. This is followed by an overview of the role of connectivity and ends with a riverine landscape perspective of biodiversity. 2. River corridors in the natural state are characterised by a diverse array of landscape elements, including surface waters (a gradient of lotic and lentic waterbodies), the fluvial stygoscape (alluvial aquifers), riparian systems (alluvial forests, marshes, meadows) and geomorphic features (bars and islands, ridges and swales, levees and terraces, fans and deltas, fringing floodplains, wood debris deposits and channel networks). 3. Fluvial action (erosion, transport, deposition) is the predominant agent of landscape evolution and also constitutes the natural disturbance regime primarily responsible for sustaining a high level of landscape diversity in river corridors. Although individual landscape features may exhibit high turnover, largely as a function of the interactions between fluvial dynamics and successional phenomena, their relative abundance in the river corridor tends to remain constant over ecological time. 4. Hydrological connectivity, the exchange of matter, energy and biota via the aqueous medium, plays a major though poorly understood role in sustaining riverine landscape diversity. Rigorous investigations of connectivity in diverse river systems should provide considerable insight into landscape‐level functional processes. 5. The species pool in riverine landscapes is derived from terrestrial and aquatic communities inhabiting diverse lotic, lentic, riparian and groundwater habitats arrayed across spatio‐temporal gradients. Natural disturbance regimes are responsible for both expanding the resource gradient in riverine landscapes as well as for constraining competitive exclusion. 6. Riverine landscapes provide an ideal setting for investigating how complex interactions between disturbance and productivity structure species diversity patterns.
-
Abstract Ice is present during a part of the year on many rivers of cold, and even temperate, regions of the globe. Though largely ignored in hydrological literature, river ice has serious hydrologic impacts, including extreme flood events caused by ice jams, interference with transportation and energy production, low winter flows and associated ecological and water quality consequences. It is also a major factor in the life cycle of many aquatic and other species, being both beneficial and destructive, depending on location and time of year. A brief review of the hydrologic aspects of river ice shows strong climatic links and illustrates the sensitivity of the entire ice regime to changes in climatic conditions. To date, this sensitivity has only partly been documented: the vast majority of related studies have focused on the timing of freeze‐up and break‐up over the past century, and indicate trends that are consistent with concomitant changes in air temperature. It is only in the past few years that attention has been paid to the more complex, and practically more important, question of what climatic change may do to the frequency and severity of extreme ice jams, floods and low flows. The probable changes to the ice regime of rivers, and associated hydrological processes and impacts, are discussed in the light of current understanding. Copyright © 2002 John Wiley & Sons, Ltd.
-
Watershed runoff is closely related to land use but this influence is difficult to quantify. This study focused on the Chaudière River watershed (Québec,...
-
This paper examines the challenges facing English flood risk management (FRM) policy and practice when considering fair decision-making processes and outcomes at a range of spatial scales. It is recognised that flooding is not fair per se : the inherent natural spatial inequality of flood frequency and extent, plus the legacy of differential system interventions, being the cause. But, drawing on the three social justice models – procedural equality, Rawls’ maximin rule and maximum utility – the authors examine the fairness principles currently employed in FRM decision-making. This is achieved, firstly, in relation to the distribution of taxpayer’s money for FRM at the national, regional and local levels and, secondly, for non-structural strategies – most notably those of insurance, flood warnings and awareness raising, land use control, home owner adaptation and emergency management. A case study of the Lower Thames catchment illustrates the challenges facing decision-makers in ‘real life’: how those strategies which appear to be most technically and economically effective fall far short of being fair from either a vulnerability or equality perspective. The paper concludes that if we are to manage flood risk somewhat more fairly then a move in the direction of government funding of nationally consistent non-structural strategies, in conjunction with lower investment decision thresholds for other local-level FRM options, appears to offer a greater contribution to equality and vulnerability-based social justice principles than the status quo.
-
Abstract. The potential impact of future climate change on runoff generation processes in two southern British Columbia catchments was explored using the Canadian Centre for Climate Modelling Analysis General Circulation Model (CGCMa1) to estimate future changes in precipitation, temperature and cloud cover while the U.B.C. Watershed Model was used to simulate discharges and quantify the separate runoff components, i.e. rainfall, snowmelt, glacier melt and groundwater. Changes, not only in precipitation and temperature but also in the spatial distribution of precipitation with elevation, cloud cover, glacier extension, altitude distribution of vegetation, vegetation biomass production and plant physiology were considered. The future climate of the catchments would be wetter and warmer than the present. In the maritime rain-fed catchment of the Upper Campbell, runoff from rainfall is the most significant source of flow for present and future climatic conditions in the autumn and winter whereas runoff from groundwater generates the flow in spring and summer, especially for the future climate scenario. The total runoff, under the future climatic conditions, would increase in the autumn and winter and decrease in spring and summer. In contrast, in the interior snow-covered Illecillewaet catchment, groundwater is the most significant runoff generation mechanism in the autumn and winter although, at present, significant flow is generated from snowmelt in spring and from glacier runoff in summer. In the future scenario, the contribution to flow from snowmelt would increase in winter and diminish in spring while the runoff from the glacier would remain unchanged; groundwater would then become the most significant source of runoff, which would peak earlier in the season. Keywords: climatic change, hydrological simulation, rainfall, snowmelt, runoff processes
-
The causes of peak flows in two climatically different mountainous-forested basins of British Columbia have been identified. The U.B.C. watershed model was used to identify the causes of peak flows, since this model separately calculates the runoff components, i.e. rainfall, snowmelt and glacier runoff. The results showed that the flood flows in the maritime basin of Upper Campbell are mainly generated by rainfall during the fall months and winter rain-on-snow events. Rainfall runoff constitutes the largest percentage of peak flow for all types of events. On the other hand, the flood flows in the inland basin of Illecillewaet are mainly produced by spring rain and snowmelt events, snowmelt events alone and summer events when runoff from the glacier melt contributes to peak discharge. However, snowmelt runoff is the dominant component of peak flows. Based on these findings, flood frequency analysis showed that considering the flow component frequency distributions marginally improves the probability distribution flows in the two examined watersheds.
-
Semantic Scholar extracted view of "CLIMATE VARIABILITY AND CHANGE IN CANADA" by E. Barrow et al.