Votre recherche
Résultats 4 ressources
-
Abstract A major challenge in ecology is to link patterns and processes across different spatial and temporal scales. Flood plains are ideal model ecosystems to study (i) the processes that create and maintain environmental heterogeneity and (ii) to quantify the effects of environmental heterogeneity on ecosystem functioning and biodiversity. Fluvial processes of cut‐and‐fill alluviation create new channels, bars and benches within a flood plain that in turn provides new surface for subsequent vegetative recruitment and growth resulting in a shifting mosaic of interconnected aquatic and terrestrial habitat patches. Composition and spatial arrangement of these habitat patches control the movement of organisms and matter among adjacent patches; and the capacity of a habitat to process matter depends on the productivity of adjacent patches and on the exchange among these patches. The exchange of matter and organisms among habitats of different age and productivity is often pulsed in nature. Small pulses of a physical driver (e.g. short‐term increase in flow) can leach large amounts of nutrients thereby stimulating primary production in adjacent aquatic patches, or trigger mass emergence of aquatic insects that may in turn impact recipient terrestrial communities. Hence, biodiversity in a river corridor context is hierarchically structured and strongly linked to the dynamic biophysical processes and feedback mechanisms that drive these chronosequences over broad time and space scales. Today, the active conversion of degraded ecosystems back to a more heterogeneous and dynamic state has become an important aspect of restoration and management where maintaining or allowing a return to the shifting habitat mosaic dynamism is the goal with the expected outcome greater biodiversity and clean water among other valuable ecosystem goods and services. Copyright © 2009 John Wiley & Sons, Ltd.
-
The impact of climate change on the frequency distribution of spring floods in the Red River basin is investigated. Several major floods in the last couple of decades have caused major damages and inconvenience to people living in the Red River flood plain south of Winnipeg, and have raised the question of whether climate change is at least partly responsible for what appears to be more frequent occurrences of high spring runoff. To investigate whether this is the case, a regression model is used to associate spring peak flow at the US–Canada border with predictor variables that include antecedent precipitation in the previous fall (used as a proxy for soil moisture at freeze-up), winter snow accumulation and spring precipitation. Data from the Coupled Model Intercomparison Project – Phase 5 (CMIP5) are used to derive information about possible changes to the predictor variables in the future, and this information is then used to derive flood distributions for future climate conditions. While mean monthly...
-
In Canada, climate change is expected to increase the extreme precipitation events by magnitude and frequency, leading to more intense and frequent river flooding. In this study, we attempt to map the flood hazard and damage under projected climate scenarios (2050 and 2080). The study was performed in the two most populated municipalities of the Petite Nation River Watershed, located in southern Quebec (Canada). The methodology follows a modelling approach, in which climate projections are derived from the Hydroclimatic Atlas of Southern Quebec following two representative concentration pathways (RCPs) scenarios, i.e., RCP 4.5 and RCP 8.5. These projections are used to predict future river flows. A frequency analysis was carried out with historical data of the peak flow (period 1969–2018) to derive different return periods (2, 20, and 100 years), which were then fed into the GARI tool (Gestion et Analyse du Risque d’Inondation). This tool is used to simulate flood hazard maps and to quantify future flood risk changes. Projected flood hazard (extent and depth) and damage maps were produced for the two municipalities under current and for future scenarios. The results indicate that the flood frequencies are expected to show a minor decrease in peak flows in the basin at the time horizons, 2050 and 2080. In addition, the depth and inundation areas will not significantly change for two time horizons, but instead show a minor decrease. Similarly, the projected flood damage changes in monetary losses are projected to decrease in the future. The results of this study allow one to identify present and future flood hazards and vulnerabilities, and should help decision-makers and the public to better understand the significance of climate change on flood risk in the Petite Nation River watershed.