Votre recherche
Résultats 150 ressources
-
Abstract. Climate change impact studies require a reference climatological dataset providing a baseline period to assess future changes and post-process climate model biases. High-resolution gridded precipitation and temperature datasets interpolated from weather stations are available in regions of high-density networks of weather stations, as is the case in most parts of Europe and the United States. In many of the world's regions, however, the low density of observational networks renders gauge-based datasets highly uncertain. Satellite, reanalysis and merged product datasets have been used to overcome this deficiency. However, it is not known how much uncertainty the choice of a reference dataset may bring to impact studies. To tackle this issue, this study compares nine precipitation and two temperature datasets over 1145 African catchments to evaluate the dataset uncertainty contribution to the results of climate change studies. These deterministic datasets all cover a common 30-year period needed to define the reference period climate. The precipitation datasets include two gauge-only products (GPCC and CPC Unified), two satellite products (CHIRPS and PERSIANN-CDR) corrected using ground-based observations, four reanalysis products (JRA55, NCEP-CFSR, ERA-I and ERA5) and one merged gauged, satellite and reanalysis product (MSWEP). The temperature datasets include one gauged-only (CPC Unified) product and one reanalysis (ERA5) product. All combinations of these precipitation and temperature datasets were used to assess changes in future streamflows. To assess dataset uncertainty against that of other sources of uncertainty, the climate change impact study used a top-down hydroclimatic modeling chain using 10 CMIP5 (fifth Coupled Model Intercomparison Project) general circulation models (GCMs) under RCP8.5 and two lumped hydrological models (HMETS and GR4J) to generate future streamflows over the 2071–2100 period. Variance decomposition was performed to compare how much the different uncertainty sources contribute to actual uncertainty. Results show that all precipitation and temperature datasets provide good streamflow simulations over the reference period, but four precipitation datasets outperformed the others for most catchments. They are, in order, MSWEP, CHIRPS, PERSIANN and ERA5. For the present study, the two-member ensemble of temperature datasets provided negligible levels of uncertainty. However, the ensemble of nine precipitation datasets provided uncertainty that was equal to or larger than that related to GCMs for most of the streamflow metrics and over most of the catchments. A selection of the four best-performing reference datasets (credibility ensemble) significantly reduced the uncertainty attributed to precipitation for most metrics but still remained the main source of uncertainty for some streamflow metrics. The choice of a reference dataset can therefore be critical to climate change impact studies as apparently small differences between datasets over a common reference period can propagate to generate large amounts of uncertainty in future climate streamflows.
-
Abstract Currently, there are a large number of diverse climate datasets in existence, which differ, sometimes greatly, in terms of their data sources, quality control schemes, estimation procedures, and spatial and temporal resolutions. Choosing an appropriate dataset for a given application is therefore not a simple task. This study compares nine global/near-global precipitation datasets and three global temperature datasets over 3138 North American catchments. The chosen datasets all meet the minimum requirement of having at least 30 years of available data, so they could all potentially be used as reference datasets for climate change impact studies. The precipitation datasets include two gauged-only products (GPCC and CPC-Unified), two satellite products corrected using ground-based observations (CHIRPS V2.0 and PERSIANN-CDR V1R1), four reanalysis products (NCEP CFSR, JRA55, ERA-Interim, and ERA5), and one merged product (MSWEP V1.2). The temperature datasets include one gauge-based (CPC-Unified) and two reanalysis (ERA-Interim and ERA5) products. High-resolution gauge-based gridded precipitation and temperature datasets were combined as the reference dataset for this intercomparison study. To assess dataset performance, all combinations were used as inputs to a lumped hydrological model. The results showed that all temperature datasets performed similarly, albeit with the CPC performance being systematically inferior to that of the other three. Significant differences in performance were, however, observed between the precipitation datasets. The MSWEP dataset performed best, followed by the gauge-based, reanalysis, and satellite datasets categories. Results also showed that gauge-based datasets should be preferred in regions with good weather network density, but CHIRPS and ERA5 would be good alternatives in data-sparse regions.
-
Adaptation to climate change is a challenge that is complex and involves increasing risk. Efforts to manage these risks involve many decision-makers, conflicting values, competing objectives and methodologies, multiple alternative options, uncertain outcomes, and debatable probabilities. Adaptation occurs at multiple levels in a complex decision environment and is generally evaluated as better–worse, not right–wrong, based on multiple criteria. Identifying the best adaptation response is difficult. Risk management techniques help to overcome these problems. Here, risk management is presented as a decision-making framework that assists in the selection of optimal strategies (according to various criteria) using a systems approach that has been well defined and generally accepted in public decision-making. In the context of adapting to climate change, the risk management process offers a framework for identifying, assessing, and prioritizing climate-related risks and developing appropriate adaptation responses. The theoretical discussion is illustrated with an example from Canada. It includes (a) the assessment of climate change-caused flood risk to the municipal infrastructure for the City of London, Ontario, Canada, and (b) analysis of adaptation options for management of the risk in one of the watersheds within the City of London – Dingman Creek.
-
Climate anomalies, such as floods and droughts, as well as gradual temperature changes have been shown to adversely affect economies and societies. Although studies find that climate change might increase global inequality by widening disparities across countries, its effects on within-country income distribution have been little investigated, as has the role of rainfall anomalies. Here, we show that extreme levels of precipitation exacerbate within-country income inequality. The strength and direction of the effect depends on the agricultural intensity of an economy. In high-agricultural-intensity countries, climate anomalies that negatively impact the agricultural sector lower incomes at the bottom end of the distribution and generate greater income inequality. Our results indicate that a 1.5-SD increase in precipitation from average values has a 35-times-stronger impact on the bottom income shares for countries with high employment in agriculture compared to countries with low employment in the agricultural sector. Projections with modeled future precipitation and temperature reveal highly heterogeneous patterns on a global scale, with income inequality worsening in high-agricultural-intensity economies, particularly in Africa. Our findings suggest that rainfall anomalies and the degree of dependence on agriculture are crucial factors in assessing the negative impacts of climate change on the bottom of the income distribution.
-
Adapting to some level of climate change has become unavoidable. However, there is surprisingly limited systematic knowledge about whether and how adaptation policies have diffused and could diffuse in the future. Most existing adaptation studies do not explicitly examine policy diffusion, which is a form of interdependent policy-making among jurisdictions at the same or across different levels of governance. To address this gap, we offer a new interpretation and assessment of the extensive adaptation policy literature through a policy diffusion perspective; we pay specific attention to diffusion drivers and barriers, motivations, mechanisms, outputs, and outcomes. We assess the extent to which four motivations and related mechanisms of policy diffusion—interests (linked with learning and competition), rights and duties (tied to coercion), ideology, and recognition (both connected with emulation)—are conceptually and empirically associated with adaptation. We also engage with adaptation policy characteristics, contextual conditions (e.g., problem severity) and different channels of adapation policy diffusion (e.g., transnational networks). We demonstrate that adaptation policy diffusion can be associated with different mechanisms, yet many of them remain remarkably understudied. So are the effects of adaptation policy diffusion in terms of changes in vulnerability and resilience. We thus identify manifold avenues for future research, and provide insights for practitioners who may hope to leverage diffusion mechanisms to enhance their adaptation efforts. This article is categorized under: Policy and Governance > Multilevel and Transnational Climate Change Governance Vulnerability and Adaptation to Climate Change > Institutions for Adaptation
-
Abstract Analyzing intra-annual stream flow can reveal the main causes for runoff changes and the contributions of climate variability and human activities. For this purpose, the Mann–Kendall and cumulative rank difference (CRD) tests, and the double mass curve method, were applied to a time series of hydro-meteorological variables from 1971 to 2010 in the Tajan River basin in Iran. Results indicated that runoff changes in the wet and dry seasons after 1999 had significant respective decreasing and increasing trends, at the 0.01 confidence level, due to dam construction. In the pre-dam period (1991–1998), the results of the double mass curve method showed that climate variability and human activities contributed 57.76% and 42.24%, respectively, to the runoff decrease during the wet season. For the post-dam period (1999–2010), climate variability and anthropogenic activities contributed 24.68% and 75.32%, respectively, to the wet season runoff decrease of 116.55 mm. On the other hand, in the same period during the dry season, climate variability contributed −30.68% and human activities contributed 130.68% to the runoff increase of 41.45 mm. It is evident that runoff changes in both wet and dry seasons were mainly due to human activities associated with dam construction to meet water supply demands for agriculture.
-
Watershed runoff is closely related to land use but this influence is difficult to quantify. This study focused on the Chaudière River watershed (Québec,...
-
Extreme rainfall intensity–duration–frequency (IDF) relations have been commonly used for estimating the design storm for the design of various urban water infrastructures. In recent years, climate change has been recognized as having a profound impact on the hydrologic cycle. Hence, the derivation of IDF relations in the context of a changing climate has been recognized as one of the most challenging tasks in current engineering practice. The main challenge is how to establish the linkages between the climate projections given by climate models at the global or regional scales and the observed extreme rainfalls at a local site of interest. Therefore, our overall objective is to introduce a new statistical modeling approach to linking global or regional climate predictors to the observed daily and sub-daily rainfall extremes at a given location. Illustrative applications using climate simulations from 21 different global climate models and extreme rainfall data available from rain gauge networks located across Canada are presented to indicate the feasibility, accuracy, and robustness of the proposed modeling approach for assessing the climate change impact on IDF relations.
-
Purpose Few people living in informal settlements in the Global South spontaneously claim that they are “resilient” or “adapting” to disaster risk or climate change. Surely, they often overcome multiple challenges, including natural hazards exacerbated by climate change. Yet their actions are increasingly examined through the framework of resilience, a notion developed in the North, and increasingly adopted in the South. To what extent eliminate’ do these initiatives correspond to the concepts that scholars and authorities place under the resilience framework? Design/methodology/approach Three longitudinal case studies in Yumbo, Salgar and San Andrés (Colombia) serve to investigate narratives of disaster risks and responses to them. Methods include narrative analysis from policy and project documents, presentations, five workshops, six focus groups and 24 interviews. Findings The discourse adopted by most international scholars and local authorities differs greatly from that used by citizens to explain risk and masks the politics involved in disaster reduction and the search for social justice. Besides, narratives of social change, aspirations and social status are increasingly masked in disaster risk explanations. Tensions are also concealed, including those regarding the winners and losers of interventions and the responsibilities for disaster risk reduction. Originality/value Our findings confirm previous results that have shown that the resilience framework contributes to “depoliticize” the analysis of risk and serves to mask and dilute the responsibility of political and economic elites in disaster risk creation. But they also show that resilience fails to explain the type of socioeconomic change that is required to reduce vulnerabilities in Latin America.