Votre recherche
Résultats 194 ressources
-
ABSTRACT Flood risk management (FRM) involves planning proactively for flooding in high‐risk areas to reduce its impacts on people and property. A key challenge for governments pursuing FRM is to pinpoint assets that are highly economically exposed and vulnerable to flood hazards in order to prioritize them in policy and planning. This paper presents a novel flood risk assessment, making use of a dataset that identifies the location, dwelling type, property characteristics, and potential economic losses of Canadian residential properties. The findings reveal that the average annual costs are $1.4B, but most of the risks are concentrated in high‐risk areas. Data gaps are uncovered that justify replication through local validation studies. The results provide a novel evidence base for specific reforms in Canada's approach to FRM, with a focus on insurance that improves both implementation and effectiveness.
-
Abstract The flood-prone Saint John River (SJR, Wolastoq), which lies within a drainage basin of 55 110 km 2 , flows a length of 673 km from its source in northern Maine, United States, to its mouth in southern New Brunswick, Canada. Major industries in the basin include forestry, agriculture, and hydroelectric power. During the 1991–2020 reference period, the SJR basin (SJRB) experienced major spring flood events in 2008, 2018, and 2019. As part of the Saint John River Experiment on Cold Season Storms, the objective of this research is to characterize and contrast these three major spring flood events. Given that the floods all occurred during spring, the hypothesis being tested is that rapid snowmelt alone is the dominant driver of flooding in the SJRB. There were commonalities and differences regarding the contributing factors of the three flood years. When averaged across the upper basin, they showed consistency in terms of positive winter and spring total precipitation anomalies, positive snow water equivalent anomalies, and steep increases in April cumulative runoff. Rain-on-snow events were a prominent feature of all three flood years. However, differences between flood years were also evident, including inconsistencies with respect to ice jams and high tides. Certain factors were present in only one or two of the three flood years, including positive total precipitation anomalies in spring, positive heavy liquid precipitation anomalies in spring, positive heavy solid precipitation anomalies in winter, and positive temperature anomalies in spring. The dominant factor contributing to peak water levels was rapid snowmelt.
-
Abstract. Climate change impact studies require a reference climatological dataset providing a baseline period to assess future changes and post-process climate model biases. High-resolution gridded precipitation and temperature datasets interpolated from weather stations are available in regions of high-density networks of weather stations, as is the case in most parts of Europe and the United States. In many of the world's regions, however, the low density of observational networks renders gauge-based datasets highly uncertain. Satellite, reanalysis and merged product datasets have been used to overcome this deficiency. However, it is not known how much uncertainty the choice of a reference dataset may bring to impact studies. To tackle this issue, this study compares nine precipitation and two temperature datasets over 1145 African catchments to evaluate the dataset uncertainty contribution to the results of climate change studies. These deterministic datasets all cover a common 30-year period needed to define the reference period climate. The precipitation datasets include two gauge-only products (GPCC and CPC Unified), two satellite products (CHIRPS and PERSIANN-CDR) corrected using ground-based observations, four reanalysis products (JRA55, NCEP-CFSR, ERA-I and ERA5) and one merged gauged, satellite and reanalysis product (MSWEP). The temperature datasets include one gauged-only (CPC Unified) product and one reanalysis (ERA5) product. All combinations of these precipitation and temperature datasets were used to assess changes in future streamflows. To assess dataset uncertainty against that of other sources of uncertainty, the climate change impact study used a top-down hydroclimatic modeling chain using 10 CMIP5 (fifth Coupled Model Intercomparison Project) general circulation models (GCMs) under RCP8.5 and two lumped hydrological models (HMETS and GR4J) to generate future streamflows over the 2071–2100 period. Variance decomposition was performed to compare how much the different uncertainty sources contribute to actual uncertainty. Results show that all precipitation and temperature datasets provide good streamflow simulations over the reference period, but four precipitation datasets outperformed the others for most catchments. They are, in order, MSWEP, CHIRPS, PERSIANN and ERA5. For the present study, the two-member ensemble of temperature datasets provided negligible levels of uncertainty. However, the ensemble of nine precipitation datasets provided uncertainty that was equal to or larger than that related to GCMs for most of the streamflow metrics and over most of the catchments. A selection of the four best-performing reference datasets (credibility ensemble) significantly reduced the uncertainty attributed to precipitation for most metrics but still remained the main source of uncertainty for some streamflow metrics. The choice of a reference dataset can therefore be critical to climate change impact studies as apparently small differences between datasets over a common reference period can propagate to generate large amounts of uncertainty in future climate streamflows.
-
Abstract Currently, there are a large number of diverse climate datasets in existence, which differ, sometimes greatly, in terms of their data sources, quality control schemes, estimation procedures, and spatial and temporal resolutions. Choosing an appropriate dataset for a given application is therefore not a simple task. This study compares nine global/near-global precipitation datasets and three global temperature datasets over 3138 North American catchments. The chosen datasets all meet the minimum requirement of having at least 30 years of available data, so they could all potentially be used as reference datasets for climate change impact studies. The precipitation datasets include two gauged-only products (GPCC and CPC-Unified), two satellite products corrected using ground-based observations (CHIRPS V2.0 and PERSIANN-CDR V1R1), four reanalysis products (NCEP CFSR, JRA55, ERA-Interim, and ERA5), and one merged product (MSWEP V1.2). The temperature datasets include one gauge-based (CPC-Unified) and two reanalysis (ERA-Interim and ERA5) products. High-resolution gauge-based gridded precipitation and temperature datasets were combined as the reference dataset for this intercomparison study. To assess dataset performance, all combinations were used as inputs to a lumped hydrological model. The results showed that all temperature datasets performed similarly, albeit with the CPC performance being systematically inferior to that of the other three. Significant differences in performance were, however, observed between the precipitation datasets. The MSWEP dataset performed best, followed by the gauge-based, reanalysis, and satellite datasets categories. Results also showed that gauge-based datasets should be preferred in regions with good weather network density, but CHIRPS and ERA5 would be good alternatives in data-sparse regions.
-
The following errata have been identified and approved in accordance with the IPCC protocol for addressing possible errors in IPCC assessment reports, synthesis reports and methodology reports as adopted by the Panel at the Thirty-Third Session (Abu Dhabi, 10-13 May 2011) and amended at the Thirty-Seventh Session (Batumi 14-18 October 2013). Errata identified following the approval and acceptance of the Special Report on Climate Change and Land (SRCCL) and prior to publication have been corrected in the final copyedited and laid out draft of the report. Note that page and line numbers for the SPM are based on the numbering used in the revised final draft as distributed Governments st 2019; and line numbers for the underlying chapters are based on the numbering used in the final draft as distributed to Governments on 24 th June 2019.
-
Adaptation to climate change is a challenge that is complex and involves increasing risk. Efforts to manage these risks involve many decision-makers, conflicting values, competing objectives and methodologies, multiple alternative options, uncertain outcomes, and debatable probabilities. Adaptation occurs at multiple levels in a complex decision environment and is generally evaluated as better–worse, not right–wrong, based on multiple criteria. Identifying the best adaptation response is difficult. Risk management techniques help to overcome these problems. Here, risk management is presented as a decision-making framework that assists in the selection of optimal strategies (according to various criteria) using a systems approach that has been well defined and generally accepted in public decision-making. In the context of adapting to climate change, the risk management process offers a framework for identifying, assessing, and prioritizing climate-related risks and developing appropriate adaptation responses. The theoretical discussion is illustrated with an example from Canada. It includes (a) the assessment of climate change-caused flood risk to the municipal infrastructure for the City of London, Ontario, Canada, and (b) analysis of adaptation options for management of the risk in one of the watersheds within the City of London – Dingman Creek.
-
Climate anomalies, such as floods and droughts, as well as gradual temperature changes have been shown to adversely affect economies and societies. Although studies find that climate change might increase global inequality by widening disparities across countries, its effects on within-country income distribution have been little investigated, as has the role of rainfall anomalies. Here, we show that extreme levels of precipitation exacerbate within-country income inequality. The strength and direction of the effect depends on the agricultural intensity of an economy. In high-agricultural-intensity countries, climate anomalies that negatively impact the agricultural sector lower incomes at the bottom end of the distribution and generate greater income inequality. Our results indicate that a 1.5-SD increase in precipitation from average values has a 35-times-stronger impact on the bottom income shares for countries with high employment in agriculture compared to countries with low employment in the agricultural sector. Projections with modeled future precipitation and temperature reveal highly heterogeneous patterns on a global scale, with income inequality worsening in high-agricultural-intensity economies, particularly in Africa. Our findings suggest that rainfall anomalies and the degree of dependence on agriculture are crucial factors in assessing the negative impacts of climate change on the bottom of the income distribution.
-
Adapting to some level of climate change has become unavoidable. However, there is surprisingly limited systematic knowledge about whether and how adaptation policies have diffused and could diffuse in the future. Most existing adaptation studies do not explicitly examine policy diffusion, which is a form of interdependent policy-making among jurisdictions at the same or across different levels of governance. To address this gap, we offer a new interpretation and assessment of the extensive adaptation policy literature through a policy diffusion perspective; we pay specific attention to diffusion drivers and barriers, motivations, mechanisms, outputs, and outcomes. We assess the extent to which four motivations and related mechanisms of policy diffusion—interests (linked with learning and competition), rights and duties (tied to coercion), ideology, and recognition (both connected with emulation)—are conceptually and empirically associated with adaptation. We also engage with adaptation policy characteristics, contextual conditions (e.g., problem severity) and different channels of adapation policy diffusion (e.g., transnational networks). We demonstrate that adaptation policy diffusion can be associated with different mechanisms, yet many of them remain remarkably understudied. So are the effects of adaptation policy diffusion in terms of changes in vulnerability and resilience. We thus identify manifold avenues for future research, and provide insights for practitioners who may hope to leverage diffusion mechanisms to enhance their adaptation efforts. This article is categorized under: Policy and Governance > Multilevel and Transnational Climate Change Governance Vulnerability and Adaptation to Climate Change > Institutions for Adaptation