Votre recherche
Résultats 358 ressources
-
The West African monsoon intraseasonal variability has huge socio-economic impacts on local populations but understanding and predicting it still remains a challenge for the weather prediction and climate scientific community. This paper analyses an ensemble of simulations from six regional climate models (RCMs) taking part in the coordinated regional downscaling experiment, the ECMWF ERA-Interim reanalysis (ERAI) and three satellite-based and observationally-constrained daily precipitation datasets, to assess the performance of the RCMs with regard to the intraseasonal variability. A joint analysis of seasonal-mean precipitation and the total column water vapor (also called precipitable water—PW) suggests the existence of important links at different timescales between these two variables over the Sahel and highlights the relevance of using PW to follow the monsoon seasonal cycle. RCMs that fail to represent the seasonal-mean position and amplitude of the meridional gradient of PW show the largest discrepancies with respect to seasonal-mean observed precipitation. For both ERAI and RCMs, spectral decompositions of daily PW as well as rainfall show an overestimation of low-frequency activity (at timescales longer than 10 days) at the expense of the synoptic (timescales shorter than 10 days) activity. Consequently, the effects of the African Easterly Waves and the associated mesoscale convective systems are substantially underestimated, especially over continental regions. Finally, the study investigates the skill of the models with respect to hydro-climatic indices related to the occurrence, intensity and frequency of precipitation events at the intraseasonal scale. Although most of these indices are generally better reproduced with RCMs than reanalysis products, this study indicates that RCMs still need to be improved (especially with respect to their subgrid-scale parameterization schemes) to be able to reproduce the intraseasonal variance spectrum adequately.
-
Empirical relationships are derived for the expected sampling error of quantile estimations using Monte Carlo experiments for two frequency distributions frequently encountered in climate sciences. The relationships found are expressed as a scaling factor times the standard error of the mean; these give a quick tool to estimate the uncertainty of quantiles for a given finite sample size.
-
An urban heat island (UHI) is a relative measure defined as a metropolitan area that is warmer than the surrounding suburban or rural areas. The UHI nomenclature includes a surface urban heat island (SUHI) definition that describes the land surface temperature (LST) differences between urban and suburban areas. The complexity involved in selecting an urban core and external thermal reference for estimating the magnitude of a UHI led us to develop a new definition of SUHIs that excludes any rural comparison. The thermal reference of these newly defined surface intra-urban heat islands (SIUHIs) is based on various temperature thresholds above the spatial average of LSTs within the city’s administrative limits. A time series of images from Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) from 1984 to 2011 was used to estimate the LST over the warm season in Montreal, Québec, Canada. Different SIUHI categories were analyzed in consideration of the global solar radiation (GSR) conditions that prevailed before each acquisition date of the Landsat images. The results show that the cumulative GSR observed 24 to 48 h prior to the satellite overpass is significantly linked with the occurrence of the highest SIUHI categories (thresholds of +3 to +7 °C above the mean spatial LST within Montreal city). The highest correlation (≈0.8) is obtained between a pixel-based temperature that is 6 °C hotter than the city’s mean LST (SIUHI + 6) after only 24 h of cumulative GSR. SIUHI + 6 can then be used as a thermal threshold that characterizes hotspots within the city. This identification approach can be viewed as a useful criterion or as an initial step toward the development of heat health watch and warning system (HHWWS), especially during the occurrence of severe heat spells across urban areas.
-
Since the 1980s, populations of the Asian tiger mosquito Aedes albopictus have become established in south-eastern, eastern and central United States, extending to approximately 40°N. Ae. albopictus is a vector of a wide range of human pathogens including dengue and chikungunya viruses, which are currently emerging in the Caribbean and Central America and posing a threat to North America.
-
Les inondations causent de lourds dommages tant économiques, sociaux qu'environnementaux, en plus d'avoir des effets sur la santé physique et psychologique des sinistrés.
-
Changes in extreme precipitation should be one of the primary impacts of climate change (CC) in urban areas. To assess these impacts, rainfall data from climate models are commonly used. The main goal of this paper is to report on the state of knowledge and recent works on the study of CC impacts with a focus on urban areas, in order to produce an integrated review of various approaches to which future studies can then be compared or constructed. Model output statistics (MOS) methods are increasingly used in the literature to study the impacts of CC in urban settings. A review of previous works highlights the non-stationarity nature of future climate data, underscoring the need to revise urban drainage system design criteria. A comparison of these studies is made difficult, however, by the numerous sources of uncertainty arising from a plethora of assumptions, scenarios, and modeling options. All the methods used do, however, predict increased extreme precipitation in the future, suggesting potential risks of combined sewer overflow frequencies, flooding, and back-up in existing sewer systems in urban areas. Future studies must quantify more accurately the different sources of uncertainty by improving downscaling and correction methods. New research is necessary to improve the data validation process, an aspect that is seldom reported in the literature. Finally, the potential application of non-stationarity conditions into generalized extreme value (GEV) distribution should be assessed more closely, which will require close collaboration between engineers, hydrologists, statisticians, and climatologists, thus contributing to the ongoing reflection on this issue of social concern.
-
Abstract Gridded estimates of precipitation using both satellite and observational station data are regularly used as reference products in the evaluation of basic climate fields and derived indices as simulated by regional climate models (RCMs) over the current period. One of the issues encountered in RCM evaluation is the fact that RCMs and reference fields are usually on different grids and often at different horizontal resolutions. A proper RCM evaluation requires remapping on a common grid. For the climate indices or other derived fields, the remapping can be done in two ways: either as a first-step operation on the original field with the derived index computed on the final/common grid in a second step, or to compute first the climate index on the original grid before remapping or regridding it as a last-step operation on the final/common grid. The purpose of this paper is to illustrate how the two approaches affect the final field, thus contributing to one of the Coordinated Regional Climate Downscaling Experiment (CORDEX) in Africa (CORDEX-Africa) goals of providing a benchmark framework for RCM evaluation over the West Africa monsoon area, using several daily precipitation indices. The results indicate the advantage of using the last-step remapping procedure, regardless of the mathematical method chosen for the remapping, in order to minimize errors in the indices under evaluation.
-
The West Africa rainfall regime constitutes a considerable challenge for Regional Climate Models (RCMs) due to the complexity of dynamical and physical processes that characterise the West African Monsoon. In this paper, daily precipitation statistics are evaluated from the contributions to the AFRICA-CORDEX experiment from two ERA-Interim driven Canadian RCMs: CanRCM4, developed at the Canadian Centre for Climate Modelling and Analysis (CCCma) and CRCM5, developed at the University of Québec at Montréal. These modelled precipitation statistics are evaluated against three gridded observed datasets—the Global Precipitation Climatology Project (GPCP), the Tropical Rainfall Measuring Mission (TRMM), and the Africa Rainfall Climatology (ARC2)—and four reanalysis products (ECMWF ERA-Interim, NCEP/DOE Reanalysis II, NASA MERRA and NOAA-CIRES Twentieth Century Reanalysis). The two RCMs share the same dynamics from the Environment Canada GEM forecast model, but have two different physics’ packages: CanRCM4 obtains its physics from CCCma’s global atmospheric model (CanAM4), while CRCM5 shares a number of its physics modules with the limited-area version of GEM forecast model. The evaluation is focused on various daily precipitation statistics (maximum number of consecutive wet days, number of moderate and very heavy precipitation events, precipitation frequency distribution) and on the monsoon onset and retreat over the Sahel region. We find that the CRCM5 has a good representation of daily precipitation statistics over the southern Sahel, with spatial distributions close to GPCP dataset. Some differences are observed in the northern part of the Sahel, where the model is characterised by a dry bias. CanRCM4 and the ERA-Interim and MERRA reanalysis products overestimate the number of wet days over Sahel with a shift in the frequency distribution toward smaller daily precipitation amounts than in observations. Both RCMs and reanalyses have difficulties in reproducing the local onset date over the Sahel region. Nevertheless, the large-scale features of the monsoon precipitation evolution over West Africa are well reproduced by the RCMs, whereas the northern limit of the rainy bands is less accurately reproduced. Both RCMs exhibit an overall good representation of the local retreat index over the Sahel region.
-
Projections from the Canadian Regional Climate Model (CRCM) for the southern part of the province of Québec, Canada, suggest an increase in extreme precipitation events for the 2050 horizon (2041–2070). The main goal of this study consisted in a quantitative and qualitative assessment of the impact of the 20 % increase in rainfall intensity that led, in the summer of 2013, to overflows in the “Rolland-Therrien” combined sewer system in the city of Longueuil, Canada. The PCSWMM 2013 model was used to assess the sensitivity of this overflow under current (2013) and future (2050) climate conditions. The simulated quantitative variables (peak flow, QCSO, and volume discharged, VD) served as the basis for deriving ecotoxicological risk indices and event fluxes (EFs) transported to the St. Lawrence (SL) River. Results highlighted 15 to 500 % increases in VD and 13 to 148 % increases in QCSO by 2050 (compared to 2013), based on eight rainfall events measured from May to October. These results show that (i) the relationships between precipitation and combined sewer overflow variables are not linear and (ii) the design criteria for current hydraulic infrastructure must be revised to account for the impact of climate change (CC) arising from changes in precipitation regimes. EFs discharged into the SL River will be 2.24 times larger in the future than they are now (2013) due to large VDs resulting from CC. This will, in turn, lead to excessive inputs of total suspended solids (TSSs) and tracers for numerous urban pollutants (organic matter and nutrients, metals) into the receiving water body. Ecotoxicological risk indices will increase by more than 100 % by 2050 compared to 2013. Given that substantial VDs are at play, and although CC scenarios have many sources of uncertainty, strategies to adapt this drainage network to the effects of CC will have to be developed.
-
This study provides a multi-site hybrid statistical downscaling procedure combining regression-based and stochastic weather generation approaches for multisite simulation of daily precipitation. In the hybrid model, the multivariate multiple linear regression (MMLR) is employed for simultaneous downscaling of deterministic series of daily precipitation occurrence and amount using large-scale reanalysis predictors over nine different observed stations in southern Québec (Canada). The multivariate normal distribution, the first-order Markov chain model, and the probability distribution mapping technique are employed for reproducing temporal variability and spatial dependency on the multisite observations of precipitation series. The regression-based MMLR model explained 16 % ~ 22 % of total variance in daily precipitation occurrence series and 13 % ~ 25 % of total variance in daily precipitation amount series of the nine observation sites. Moreover, it constantly over-represented the spatial dependency of daily precipitation occurrence and amount. In generating daily precipitation, the hybrid model showed good temporal reproduction ability for number of wet days, cross-site correlation, and probabilities of consecutive wet days, and maximum 3-days precipitation total amount for all observation sites. However, the reproducing ability of the hybrid model for spatio-temporal variations can be improved, i.e. to further increase the explained variance of the observed precipitation series, as for example by using regional-scale predictors in the MMLR model. However, in all downscaling precipitation results, the hybrid model benefits from the stochastic weather generator procedure with respect to the single use of deterministic component in the MMLR model.
-
The Saint-Jean River (SRJ) in Eastern Canada is prone to the formation of very large rafts of wood. Managers of the SJR suspected these jams to influence salmon migration and carried out a dismantling operation to remove large wood accumulated in a 1.2 km long wood raft. This operation became a great opportunity to address key issues relating to large wood dynamics in a fluvial system: residence time and flood contribution to wood recruitment and transport. During the dismantling, we systematically sampled 319 trees from which year of death could be estimated from dendrochronology and year of accumulation in the raft could be obtained from satellite and aerial photos. These two dates allowed us to quantify the residence time for 262 datable large wood (LW) within the fluvial system, to examine the peak years of LW recruitment and to correlate the raft growth rate with hydrometeorological conditions since 1993. The results also emphasized four types of LW flood related to wood dynamics: 1) an erosive flood that produces a large amount of wood in river, 2) a mobilizing flood that carries large quantities of wood, 3) a flood mix that both recruits and transports large quantities of wood, and 4) an ice-breakup flood.
-
Abstract Large wood (LW) is a ubiquitous feature in rivers of forested watersheds worldwide, and its importance for river diversity has been recognized for several decades. Although the role of LW in fluvial dynamics has been extensively documented, there is a need to better quantify the most significant components of LW budgets at the river scale. The purpose of our study was to quantify each component (input, accumulation, and output) of a LW budget at the reach and watershed scales for different time periods (i.e. a 50‐year period, decadal cycle, and interannual cycle). The LW budget was quantified by measuring the volumes of LW inputs, accumulations, and outputs within river sections that were finally evacuated from the watershed. The study site included three unusually large but natural wood rafts in the delta of the Saint‐Jean River (SJR; Québec, Canada) that have accumulated all LW exported from the watershed for the last 50 years. We observed an increase in fluvial dynamics since 2004, which led to larger LW recruitment and a greater LW volume trapped in the river corridor, suggesting that the system is not in equilibrium in terms of the wood budget but is rather recovering from previous human pressures as well as adjusting to hydroclimatic changes. The results reveal the large variability in the LW budget dynamics during the 50‐year period and allow us to examine the eco‐hydromorphological trajectory that highlights key variables (discharge, erosion rates, bar surface area, sinuosity, wood mobility, and wood retention). Knowledge on the dynamics of these variables improves our understanding of the historical and future trajectories of LW dynamics and fluvial dynamics in gravel‐bed rivers. Extreme events (flood and ice‐melt) significantly contribute to LW dynamics in the SJR river system. Copyright © 2017 John Wiley & Sons, Ltd.