Votre recherche
Résultats 180 ressources
-
Prenatal stress alters fetal programming, potentially predisposing the ensuing offspring to long-term adverse health outcomes. To gain insight into environmental influences on fetal development, this QF2011 study evaluated the urinary metabolomes of 4-year-old children (n = 89) who were exposed to the 2011 Queensland flood in utero. Proton nuclear magnetic resonance spectroscopy was used to analyze urinary metabolic fingerprints based on maternal levels of objective hardship and subjective distress resulting from the natural disaster. In both males and females, differences were observed between high and low levels of maternal objective hardship and maternal subjective distress groups. Greater prenatal stress exposure was associated with alterations in metabolites associated with protein synthesis, energy metabolism, and carbohydrate metabolism. These alterations suggest profound changes in oxidative and antioxidative pathways that may indicate a higher risk for chronic non-communicable diseases such obesity, insulin resistance, and diabetes, as well as mental illnesses, including depression and schizophrenia. Thus, prenatal stress-associated metabolic biomarkers may provide early predictors of lifetime health trajectories, and potentially serve as prognostic markers for therapeutic strategies in mitigating adverse health outcomes.
-
Abstract This work explores the relationship between catchment size, rainfall duration, and future streamflow increases on 133 North American catchments with sizes ranging from 66.5 to 9886 km2. It uses the outputs from a high spatial (0.11°) and temporal (1-h) resolution single model initial-condition large ensemble (SMILE) and a hydrological model to compute extreme rainfall and streamflow for durations ranging from 1 to 72 h and for return periods of between 2 and 300 years. Increases in extreme precipitation are observed across all durations and return periods. The projected increases are strongly related to duration, frequency, and catchment size, with the shortest durations, longest return periods, and smaller catchments witnessing the largest relative rainfall increases. These increases can be quite significant, with the 100-yr rainfall becoming up to 20 times more frequent over the smaller catchments. A similar duration–frequency–size pattern of increases is also observed for future extreme streamflow, but with even larger relative increases. These results imply that future increases in extreme rainfall will disproportionately impact smaller catchments, and particularly so for impervious urban catchments which are typically small, and whose stormwater drainage infrastructures are designed for long-return-period flows, both being conditions for which the amplification of future flow will be maximized.
-
The Peace–Athabasca Delta (PAD) in western Canada is one of the largest inland deltas in the world. Flooding caused by the expansion of lakes beyond normal shorelines occurred during the summer of 2020 and provided a unique opportunity to evaluate the capabilities of remote sensing platforms to map surface water expansion into vegetated landscape with complex surface connectivity. Firstly, multi-source remotely sensed data via satellites were used to create a temporal reconstruction of the event spanning May to September. Optical synthetic aperture radar (SAR) and altimeter data were used to reconstruct surface water area and elevation as seen from space. Lastly, temporal water surface area and level data obtained from the existing satellites and hydrometric stations were used as input data in the CNES Large-Scale SWOT Simulator, which provided an overview of the newly launched SWOT satellite ability to monitor such flood events. The results show a 25% smaller water surface area for optical instruments compared to SAR. Simulations show that SWOT would have greatly increased the spatio-temporal understanding of the flood dynamics with complete PAD coverage three to four times per month. Overall, seasonal vegetation growth was a major obstacle for water surface area retrieval, especially for optical sensors.
-
Abstract Background The Canadian government’s response to the ongoing COVID-19 pandemic included the implementation of several restrictive measures since March 2020. These actions sought to decrease social contact and increase physical distancing, including that within universities. Such constraints were required to impede the transmission of the virus; however, concerns remain about their impact on the sexual and intimate relationships of university employees and students. Aim This study examined the associations between COVID-19–related stress and sexual frequency, sexual satisfaction, and relationship satisfaction, also testing the mediating role of psychological distress. Methods The models were tested with Canadian data collected from university employees and students in 2 phases: the first wave in April-May 2020 (T1; n = 2754) and the second wave in November-December 2021 (T2; n = 1430), 18 months afterward. Participants completed self-report questionnaires online. Path analyses were performed to test the associations of the mediation models. Outcomes The principal outcomes included psychological distress determined via the Patient Health Questionnaire–4, relationship satisfaction measured via the Dyadic Adjustment Scale, and sexual satisfaction and sexual frequency ascertained through a single item each. Results Overall, COVID-19–related stress was associated with higher psychological distress, which in turn was related to lower sexual frequency, sexual satisfaction, and relationship satisfaction. Similar results were obtained with T1 and T2 data, indicating the mediating effect of psychological distress. Clinical Implications These findings increase scholarly comprehension of the negative associations between stress/distress and sexual and romantic relationships. Sexuality and close relationships are vital to the quality of human life; thus, targeted interventions should be developed to reduce COVID-19–related stress and its impact on sexual and romantic relationships to mitigate the long-term influences of this unique global challenge. Strengths and Limitations To our knowledge, this study is the first to use a large sample size and replicate findings in 2 waves. Nonetheless, it is limited by the use of cross-sectional data. Longitudinal studies with the same participants are mandated to better understand the evolution of these outcomes. Conclusion COVID-19–related stress and psychological distress were found among participating university students and employees and were associated with lower sexual satisfaction, sexual frequency, and intimate relationship satisfaction. These results were observed at the early onset of the pandemic and 18 months afterward, suggesting that the stress generated by the pandemic were not mere reactions to the onset of the pandemic but persisted over time.
-
Introduction: Over the past years, the Outaouais region (Quebec, Canada) and their residents have had to endure no less than five natural disasters (floods, tornadoes). These disasters are likely to have a variety of consequences on the physical and mental health of adolescents, as well as on their personal, family, school and social lives. The experiences of teenagers are also likely to vary depending on whether they live in rural or urban areas. Method: Data were collected via a self-administered questionnaire in February 2022. A total of 1307 teenagers from two high schools participated in the study by completing an online survey. The questionnaire measured various aspects of the youth's mental health using validated tests, such as manifestations of post-traumatic stress, anxiety and depression, as well as the presence of suicidal thoughts and self-harm. Other aspects of the youth's experience were measured, including their level of social support, school engagement, alcohol and drug use, and coping strategies. Results: One third of young students (n=1307) were experiencing depressive symptoms and suicidal thoughts, as well as significant daily stress. More than 25% of the students had moderate or severe anxiety and thoughts of self-harm. These problems were significantly more prevalent among youths with prior exposure to a natural disaster. The study data also revealed that youths living in rural areas had a more worrying profile than those living in urban areas. Conclusion: Similar to other studies (Ran et al., 2015; Stratta et al., 2014), our research data revealed that youths living in rural areas presented a more concerning profile than those residing in urban areas. It therefore seems important, in future studies and services, to focus more specifically on these teenagers to better understand their needs and to develop adapted services more likely to meet them.
-
Background: Few studies have explored how vector control interventions may modify associations between environmental factors and malaria. Methods: We used weekly malaria cases reported from six public health facilities in Uganda. Environmental variables (temperature, rainfall, humidity, and vegetation) were extracted from remote sensing sources. The non-linearity of environmental variables was investigated, and negative binomial regression models were used to explore the influence of indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs) on associations between environmental factors and malaria incident cases for each site as well as pooled across the facilities, with or without considering the interaction between environmental variables and vector control interventions. Results: An average of 73.3 weekly malaria cases per site (range: 0–597) occurred between 2010 and 2018. From the pooled model, malaria risk related to environmental variables was reduced by about 35% with LLINs and 63% with IRS. Significant interactions were observed between some environmental variables and vector control interventions. There was site-specific variability in the shape of the environment–malaria risk relationship and in the influence of interventions (6 to 72% reduction in cases with LLINs and 43 to 74% with IRS). Conclusion: The influence of vector control interventions on the malaria–environment relationship need to be considered at a local scale in order to efficiently guide control programs.
-
This dataset contains: 1. The output of an ensemble of simulations of a polar low that developed over the Norwegian Sea on 25 March 2019. 2. The manually-obtained tracks of the polar low. 1. Simulation output The simulations of the polar low were conducted with the convection-permitting Canadian Regional Climate Model version 6 (CRCM6/GEM4) driven by the reanalysis ERA5. The model has a grid mesh of 0.0225° and a vertical grid with 62 levels. The size of the model domain is 1004 x 1004 grid points, excluding the sponge zone, and the model top is at 2 hPa. The model was initialised every six hours from 23 March at 0000 UTC to 24 March at 1800 UTC, and the end date of the simulations was 26 March at 0600 UTC. This dataset contains the hourly output of these eight simulations. The 2D fields include several variables at screen level (temperature, dewpoint temperature, relative humidity, horizontal wind, wind gust) as well as sea level pressure,1 h accumulated precipitation, and surface sensible and latent heat fluxes. The 3D fields are geopotential height, temperature, relative humidity, horizontal wind, and the vertical velocity in pressure coordinate, and they are provided on 22 pressure levels from 1,000 to 10 hPa. 2. Polar low tracks This dataset contains the different tracks of the polar low that have been obtained using the observations, the reanalysis ERA5 and the output of the eight simulations. The data provided are the time, latitude and longitude of the track points, as well as the sea level pressure minimum. For the track obtained using observations, the dataset also includes the distance between the track point and the closest surface station (which is the one that provides the value of the sea level pressure minimum). Only the sea level pressure observations from stations within 25 km from the PL centre are included.
-
Polar lows (PLs), which are intense maritime polar mesoscale cyclones, are associated with severe weather conditions. Due to their small size and rapid development, PL forecasting remains a challenge. Convection-permitting models are adequate to forecast PLs since, compared to coarser models, they provide a better representation of convection as well as surface and near-surface processes. A PL that formed over the Norwegian Sea on 25 March 2019 was simulated using the convection-permitting Canadian Regional Climate Model version 6 (CRCM6/GEM4, using a grid mesh of 2.5 km) driven by the reanalysis ERA5. The objectives of this study were to quantify the impact of the initial conditions on the simulation of the PL, and to assess the skill of the CRCM6/GEM4 at reproducing the PL. The results show that the skill of the CRCM6/GEM4 at reproducing the PL strongly depends on the initial conditions. Although in all simulations the synoptic environment is favourable for PL development, with a strong low-level temperature gradient and an upper-level through, only the low-level atmospheric fields of three of the simulations lead to PL development through baroclinic instability. The two simulations that best captured the PL represent a PL deeper than the observed one, and they show higher temperature mean bias compared to the other simulations, indicating that the ocean surface fluxes may be too strong. In general, ERA5 has more skill than the simulations at reproducing the observed PL, but the CRCM6/GEM4 simulation with initialisation time closer to the genesis time of the PL reproduces quite well small scale features as low-level baroclinic instability during the PL development phase.
-
Polar lows (PLs) are maritime mesoscale cyclones associated with severe weather. They develop during marine cold air outbreaks near coastlines and the sea ice edge. Unfortunately, our knowledge about the mechanisms leading to PL development is still incomplete. This study aims to provide a detailed analysis of the development mechanisms of a PL that formed over the Norwegian Sea on 25 March 2019 using the output of a simulation with the sixth version of the Canadian Regional Climate Model (CRCM6/GEM4), a convection-permitting model. First, the life cycle of the PL is described and the vertical wind shear environment is analysed. Then, the horizontal wind divergence and the baroclinic conversion term are computed, and a surface pressure tendency equation is developed. In addition, the roles of atmospheric static stability, latent heat release, and surface heat and moisture fluxes are explored. The results show that the PL developed in a forward-shear environment and that moist baroclinic instability played a major role in its genesis and intensification. Baroclinic instability was initially only present at low levels of the atmosphere, but later extended upward until it reached the mid-troposphere. Whereas the latent heat of condensation and the surface heat fluxes also contributed to the development of the PL, convective available potential energy and barotropic conversion do not seem to have played a major role in its intensification. In conclusion, this study shows that a convection-permitting model simulation is a powerful tool to study the details of the structure of PLs, as well as their development mechanisms.
-
Abstract The contraction of species range is one of the most significant symptoms of biodiversity loss worldwide. While anthropogenic activities and habitat alteration are major threats for several species, climate change should also be considered. For species at risk, differentiating the effects of human disturbances and climate change on past and current range transformations is an important step towards improved conservation strategies. We paired historical range maps with global atmospheric reanalyses from different sources to assess the potential effects of recent climate change on the observed northward contraction of the range of boreal populations of woodland caribou ( Rangifer tarandus caribou ) in Quebec (Canada) since 1850. We quantified these effects by highlighting the discrepancies between different southern limits of the caribou's range (used as references) observed in the past and reconstitutions obtained through the hindcasting of the climate conditions within which caribou are currently found. Hindcasted southern limits moved ~105 km north over time under all reanalysis datasets, a trend drastically different from the ~620 km reported for observed southern limits since 1850. The differences in latitudinal shift through time between the observed and hindcasted southern limits of distribution suggest that caribou range recession should have been only 17% of what has been observed since 1850 if recent climate change had been the only disturbance driver. This relatively limited impact of climate reinforces the scientific consensus stating that caribou range recession in Quebec is mainly caused by anthropogenic drivers (i.e. logging, development of the road network, agriculture, urbanization) that have modified the structure and composition of the forest over the past 160 years, paving the way for habitat‐mediated apparent competition and overharvesting. Our results also call for a reconsideration of past ranges in models aiming at projecting future distributions, especially for endangered species.
-
Flood-related losses are on the rise in Canada and private insurance remains costly or unavailable in high-risk areas. Despite the introduction of overland flood insurance in 2015, following the federal government’s invitation to the insurance industry to participate in flood risk-sharing, federal and provincial disaster financial assistance programs still cover a large portion of these costs. As the risks increase, governments are questioning the sustainability of using taxpayers’ money to finance such losses, leaving municipalities with significant residual risk. The growing number of people and assets occupying flood-prone areas, including public infrastructure, has contributed to the sharp increase in flood damage costs. Based on a literature review and discussions with experts, this paper describes the municipal role in flood-risk management, and shows how provincial and federal financial assistance to municipalities for flood damage in British Columbia and Québec may be counterproductive in fostering flood-risk management at the municipal level. We conclude that municipalities can play a more proactive role in incorporating risk reduction as the key objective of disaster financial assistance and propose three specific policy instruments to help reduce the growing number of people living in flood zones: flood mapping, land-use planning, and the relocation of high-risk properties.
-
Many regions are becoming subject to successive flooding and with climate change taking its toll, it is no surprise that we observe a growing interest for risk avoidance strategies such as relocation. Cost-benefit analysis is the dominant tool used by decision-makers to assess flood risk avoidance projects. Yet, few guidelines are available about how to implement such analysis. This paper advocates for a probabilistic cost-benefit analysis and details a step-by-step procedure via a real-world example. The results show that relocation can be a cost-effective strategy for many high-risk properties and neighborhoods. The level of indemnities and the inclusion of intangible losses are two key drivers of profitability. The paper also analyzes three distinct designs of relocation programs. The results reveal that proactive and innovative schemes, such as managed retreat and usufruct arrangements, constitute worthwhile alternatives to a more conventional post-flood response design.
-
Résumé Au Québec, la dynamique fluviale de la rivière des Escoumins a été perturbée par l'industrie forestière pendant plus d'un siècle. Un barrage a notamment été construit près de l'embouchure en 1846, puis démantelé en 2013. Ces perturbations ont entraîné des répercussions importantes sur l'équilibre du cours d'eau et sur l'habitat du saumon atlantique. Cette étude propose donc de caractériser la dynamique fluviale de la rivière des Escoumins et d'analyser les impacts du démantèlement du barrage dans une perspective de restauration des processus hydrogéomorphologiques et d'amélioration de l'habitat du saumon atlantique. Les résultats suggèrent que la trajectoire de la rivière a évolué différemment en fonction du style fluvial et de la composition granulométrique de chacun de ses segments homogènes. Toutefois, ce sont les activités de la drave et le démantèlement du barrage qui semblent avoir été les facteurs de contrôle les plus importants sur l'évolution de la trajectoire du cours d'eau. Le démantèlement a notamment permis la restauration de processus hydrogéomorphologiques et la libre circulation des salmonidés. Une meilleure procédure entourant le démantèlement des barrages et leur suivi devrait donc être mise en place au Canada afin de favoriser cette pratique . , Abstract In Quebec, the fluvial dynamics of the Escoumins River have been disturbed by the forestry industry for over a century. Most specifically, a dam was built near the mouth of the river in 1846 and dismantled in 2013. These disturbances had significant repercussions on the equilibrium of the river and Atlantic salmon habitat. This study therefore proposes to characterize the fluvial dynamics of the Escoumins River and to analyze the impacts of the dam dismantling from the perspective of restoring hydrogeomorphological processes and improving Atlantic salmon habitat. The results suggest that the trajectory of the river evolved differently depending on the fluvial style and the grain size composition of each of its homogeneous segments. However, log drive activities in river and dam removal appear to have been the most important controlling factors on the evolution of the stream trajectory. The dismantling notably allowed the restoration of hydrogeomorphological processes and the free movement of salmonids. A better procedure for dam removal and monitoring should be put in place in Canada to encourage this practice . , Messages clés Les activités de la drave et le démantèlement du barrage ont fortement affecté la trajectoire hydrogéomorphologique de la rivière des Escoumins, au Québec. Un démantèlement de barrage permet une restauration globale de l'écosystème fluvial et de ses processus hydrogéomorphologiques en plus d'améliorer les habitats disponibles pour les espèces aquatiques. Le démantèlement des barrages désuets ou désaffectés doit être considéré pour la restauration des écosystèmes fluviaux et une meilleure procédure entourant cette pratique doit être mise en place au Canada.