Votre recherche
Résultats 153 ressources
-
La notoriété des rivières gaspésiennes est fondée, d’une part, sur la couleur émeraude de l’eau, de leurs eaux poissonneuses, mais également sur leurs bassins versants réactifs et toutes les conséquences que cela peut engendrer (p.ex. crues exceptionnelles, érosion, inondation, avulsion, production de bois en rivière, etc.). Suite aux crues majeures et consécutives de 2010 et 2011, les gestionnaires de la réserve faunique de Port-Daniel ont observé la présence d’un embâcle de bois majeur obstruant le chenal dans la portion aval de la rivière Port-Daniel. Cette obstruction a apporté son lot d’inquiétudes et de soucis par rapport au comportement migratoire ainsi qu’à l’abondance du Saumon de l’Atlantique (Salmo salar). C’est dans cette optique qu’une étude hydrogéomorphologique dans la rivière Port-Daniel a été commandée afin d’évaluer l’impact des embâcles de bois sur la montaison du saumon. L’objectif général a été d’analyser la dynamique du bois en rivière afin d’en évaluer son impact sur la trajectoire géomorphologique du cours d’eau et sur la migration anadrome du saumon. Le suivi historique du lit mineur a été réalisé à partir de séquences temporelles de photographies aériennes (1964, 1975, 1986 et 2001), d’orthophotographies (2004 et 2016), d’imagerie satellitaire (2010, 2013, 2018) et de drone (2019). Les modifications observées dans la géométrie planimétrique du lit mineur a permis de caractériser les processus et les ajustements morphologiques (migration latérale, avulsion, recoupement de méandre) et de quantifier l’érosion (calcul de taux de recule, surface érodée) pour chacune des époques. L’évaluation du bilan ligneux a été effectuée sur environ 15 km du corridor fluvial de la rivière Port-Daniel. Le bilan a été dressé à partir des apports (estimé à partir des surfaces érodées dans le temps et de la densité volumétrique), du bois en transition (mesuré dans le corridor fluvial à l’été 2019) ainsi qu’en accumulation (mesuré dans la zone deltaïque). L’analyse des résultats a ensuite permis de dresser un diagnostic à partir des caractéristiques hydrogéomorphologiques pour ainsi évaluer la trajectoire géomorphologique de la rivière Port-Daniel. Le bilan ligneux de la rivière Port-Daniel n’indique en aucun cas que le bois présent dans le corridor fluvial, incluant l’embâcle majeur observé à la suite des crues de 2010 et 2011, constitue une restriction à la montaison et la dévalaison du saumon. En effet, le chenal principal, autrefois obstrué par un embâcle massif, a emprunté un tracé différent possédant des caractéristiques hydrogéomorphologiques favorables à la migration anadrome de salmonidés. De plus, les analyses et les observations terrain ont démontré que la formation de ces embâcles massifs a contribué à la reconstruction de la plaine alluviale et que plusieurs des embâcles présents ont permis au chenal de se stabiliser. La présence et l’activité du Castor du Canada (Castor canadensis) ont été également observées. Toutefois, la dimension, les caractéristiques et la localisation des barrages présents dans le chenal migratoire ainsi que la littérature ne montrent pas ces structures comme des nuisances aux mouvements des salmonidés.
-
Large-scale flood risk assessment is essential in supporting national and global policies, emergency operations and land-use management. The present study proposes a cost-efficient method for the large-scale mapping of direct economic flood damage in data-scarce environments. The proposed framework consists of three main stages: (i) deriving a water depth map through a geomorphic method based on a supervised linear binary classification; (ii) generating an exposure land-use map developed from multi-spectral Landsat 8 satellite images using a machine-learning classification algorithm; and (iii) performing a flood damage assessment using a GIS tool, based on the vulnerability (depth–damage) curves method. The proposed integrated method was applied over the entire country of Romania (including minor order basins) for a 100-year return time at 30-m resolution. The results showed how the description of flood risk may especially benefit from the ability of the proposed cost-efficient model to carry out large-scale analyses in data-scarce environments. This approach may help in performing and updating risk assessments and management, taking into account the temporal and spatial changes in hazard, exposure, and vulnerability.
-
Abstract Microsoft released a U.S.-wide vector building dataset in 2018. Although the vector building layers provide relatively accurate geometries, their use in large-extent geospatial analysis comes at a high computational cost. We used High-Performance Computing (HPC) to develop an algorithm that calculates six summary values for each cell in a raster representation of each U.S. state, excluding Alaska and Hawaii: (1) total footprint coverage, (2) number of unique buildings intersecting each cell, (3) number of building centroids falling inside each cell, and area of the (4) average, (5) smallest, and (6) largest area of buildings that intersect each cell. These values are represented as raster layers with 30 m cell size covering the 48 conterminous states. We also identify errors in the original building dataset. We evaluate precision and recall in the data for three large U.S. urban areas. Precision is high and comparable to results reported by Microsoft while recall is high for buildings with footprints larger than 200 m2 but lower for progressively smaller buildings.
-
AbstractFloods are the most frequent natural disaster in Canada, putting Canadian lives and property at risk. Projected variations in precipitation and temperature are expected to further intensify...
-
Abstract The present study analyses the impacts of past and future climate change on extreme weather events for southern parts of Canada from 1981 to 2100. A set of precipitation and temperature‐based indices were computed using the downscaled Coupled Model Intercomparison Project Phase 5 (CMIP5) multi‐model ensemble projections at 8 km resolution over the 21st Century for two representative concentration pathway (RCP) scenarios: RCP4.5 and RCP8.5. The results show that this region is expected to experience stronger warming and a higher increase in precipitation extremes in future. Generally, projected changes in minimum temperature will be greater than changes in maximum temperature, as shown by respective indices. A decrease in frost days and an increase in warm nights will be expected. By 2100 there will be no cool nights and cool days. Daily minimum and maximum temperatures will increase by 12 and 7°C, respectively, under the RCP8.5 scenario, when compared with the reference period 1981–2000. The highest warming in minimum temperature and decrease in cool nights and days will occur in Ontario and Quebec provinces close to the Great Lakes and Hudson Bay. The highest warming in maximum temperature will occur in the southern parts of Alberta and Saskatchewan. Annual total precipitation is expected to increase by about 16% and the occurrence of heavy precipitation events by five days. The highest increase in annual total precipitation will occur in the northern parts of Ontario and Quebec and in western British Columbia.
-
Abstract Climate change is predicted to increase the frequency and intensity of floods in the province of Quebec, Canada. Therefore, in 2015, to better monitor the level of adaptation to flooding of Quebec residents living in or near a flood-prone area, the Quebec Observatory of Adaptation to Climate Change developed five indices of adaptation to flooding, according to the chronology of events. The present study was conducted 4 years later and is a follow-up to the 2015 one. Two independent samples of 1951 (2015) and 974 (2019) individuals completed a questionnaire on their adoption (or non-adoption) of flood adaptation behaviors, their perception of the mental and physical impacts of flooding, and their knowledge of the fact that they lived in a flood-prone area. The results of the study demonstrated the measurement invariance of the five indices across two different samples of people over time, ensuring that the differences (or absence of differences) observed in flood-related adaptive behaviors between 2015 and 2019 were real and not due to measurement errors. They also showed that, overall, Quebeckers’ flood-related adaptive behaviors have not changed considerably since 2015, with adaptation scores being similar in 2019 for four of the five flood indices. Moreover, the results indicated an increase in self-reported physical and mental health issues related to past flooding events, as well as a larger proportion of people having consulted a health professional because of these problems. Thus, this study provides a better understanding of flood adaptation in Quebec over the past 4 years and confirms that the five adaptive behavior indices developed in 2015 are appropriate tools for monitoring changes in flood adaptation in the province. Finally, our results showed that little has changed in Quebeckers’ adoption of adaptive behaviors, highlighting the need for awareness raising in order to limit the impacts that climate change will have on the population.
-
Short-duration precipitation extremes are widely used in the design of engineering infrastructure systems and they also lead to high impact flash flood events and landslides. Better understanding of these events in a changing climate is therefore critical. This study assesses characteristics of short-duration precipitation extremes of 1-, 3-, 6- and 12-h durations in terms of the precipitation-temperature (P–T) relationship in current and future climates for ten Canadian climatic regions using the limited area version of the global environment multiscale (GEM) model. The GEM simulations, driven by ERA-Interim reanalysis and two coupled global climate models (CanESM2 and MPI-ESM), reproduce the general observed regional P–T relationship characteristics in current climate (1981–2010), such as sub-CC (Clausius–Clapeyron) and CC scalings for the coastal and northern, and inland regions, respectively, albeit with some underestimation. Analysis of the transient climate change simulations suggests important shifts and/or extensions of the P–T curve to higher temperature bins in future climate (2071–2100) for RCP4.5 and 8.5 scenarios, particularly for 1-h duration. Analysis of the spatial patterns of dew point depression (temperature minus dew point temperature) and convective available potential energy (CAPE) corresponding to short-duration precipitation extremes for different temperature bins show their changing relative importance from low to high temperature bins. For the low-temperature bins, short-duration precipitation extremes are largely due to high relative humidity, while for high-temperature bins, strong convection due to atmospheric instability brought by surface warming is largely responsible. The analysis thus addresses some of the key knowledge gaps related to the behavior of P–T relationship and associated mechanisms for the Canadian regions.
-
Abstract The consensus around the need for a shift in river management approaches to include more natural processes is steadily growing amongst scientists, practitioners, and governmental agencies. The freedom space for rivers concept promotes the delineation of a single space that integrates multiple fluvial dynamics such as floods, lateral migration, channel avulsions, and riparian wetlands connectivity. The objective of this research is to assess the validity of the hydrogeomorphological approach to delineate the freedom space for an extensive sampling of river reaches, covering 167 km, in contrasting watersheds in Quebec (Canada). Comparative analysis was conducted on the relative importance of erosion and flood processes on the freedom space delineation for various fluvial types. Semiautomated tools based on light detection and ranging (LiDAR) digital elevation models were also tested on an additional 274 km of watercourses to facilitate freedom space mapping over extensive zones and for highly dynamics environments such as alluvial fans. In the studied reaches, flood and erosion processes occur respectively, on average, in a space equivalent to 2.6 and 20.6 channel widths. In unconfined landscapes, flood processes represent an area up to almost four times the area of erosion processes expected in a 50‐year period. In partly confined and confined environments, erosion processes are more likely to exceed flooding zone, and therefore need to be integrated in the mapping. This study helps better determine the conditions for which the full methodology of freedom space mapping is required or where semiautomated methods can be used. It provides useful guidelines for the implementation of the freedom space approach.
-
ABSTRACTStatistical relationships between weather conditions and the release of snow avalanches in the low-elevation coastal valleys of the northern Gaspe Peninsula are still poorly validated. As s...
-
Abstract River ice breakup has extensive implications on cold-region hydrological, ecological and river morphological systems. However, spatial and temporal breakup patterns under the changing climate are not well explored on large scale. This study discusses the spatial-temporal variations of breakup timing over terrestrial ecozones and five selected river basins of Canada based on long-term (1950–2016) data record. The link between the discovered patterns and climatic drivers (including air temperature, snowfall and rainfall), as well as elevation and anthropogenic activities are analyzed. An overall earlier breakup trend is observed across Canada and the spring air temperature is found to be the main driver behind it. However, the most pronounced warming trends across Canada is observed in winter. Spring warming trend is not as strong as winter warming and even becomes weak as period changes from 1950–2016 to 1970–2016, resulting in more stations showing later and significant later breakup during 1970–2016. Breakup pattern also displays evident spatial differences. Significant earlier breakup trends are mainly seen in western Canada (e.g. the Nelson River basin) and Arctic where spring warming trends are evident. Later and mixed breakup trends are generally identified in regions with weak warming or even cooling trends, such as Atlantic Canada and the St. Lawrence River basin. Spring snowfall generally delays breakup. Spring rainfall usually advances breakup dates while winter-rainfall can also delay breakup through refreezing. The increased snowfall in the north and increased rainfall in the south may be the reason why breakup timing is more sensitive to climatic warming in lower latitude regions than in higher latitude regions. Additionally, breakup timing in main streams and large rivers appears to be less sensitive to the warming trend than the headwaters and small tributaries. Elevation and flow regulation are also found to be contributing factors to the changes in breakup timing.
-
The paper describes the development of predictive equations of windthrow for five tree species based on remote sensing of wind-affected stands in southwestern New Brunswick (NB). The data characterises forest conditions before, during and after the passing of extratropical cyclone Arthur, July 4–5, 2014. The five-variable logistic function developed for balsam fir (bF) was validated against remote-sensing-acquired windthrow data for bF-stands affected by the Christmas Mountains windthrow event of November 7, 1994. In general, the prediction of windthrow in the area agreed fairly well with the windthrow sites identified by photogrammetry. The occurrence of windthrow in the Christmas Mountains was prominent in areas with shallow soils and prone to localised accelerations in mean and turbulent airflow. The windthrow function for bF was subsequently used to examine the future impact of windthrow under two climate scenarios (RCP’s 4.5 and 8.5) and species response to local changes anticipated with global climate change, particularly with respect to growing degree-days and soil moisture. Under climate change, future windthrow in bF stands (2006–2100) is projected to be modified as the species withdraws from the high-elevation areas and NB as a whole, as the climate progressively warms and precipitation increases, causing the growing environment of bF to deteriorate.
-
Precipitation and temperature are among major climatic variables that are used to characterize extreme weather events, which can have profound impacts on ecosystems and society. Accurate simulation of these variables at the local scale is essential to adapt urban systems and policies to future climatic changes. However, accurate simulation of these climatic variables is difficult due to possible interdependence and feedbacks among them. In this paper, the concept of copulas was used to model seasonal interdependence between precipitation and temperature. Five copula functions were fitted to grid (approximately 10 km × 10 km) climate data from 1960 to 2013 in southern Ontario, Canada. Theoretical and empirical copulas were then compared with each other to select the most appropriate copula family for this region. Results showed that, of the tested copulas, none of them consistently performed the best over the entire region during all seasons. However, Gumbel copula was the best performer during the winter season, and Clayton performed best in the summer. More variability in terms of best copula was found in spring and fall seasons. By examining the likelihoods of concurrent extreme temperature and precipitation periods including wet/cool in the winter and dry/hot in the summer, we found that ignoring the joint distribution and confounding impacts of precipitation and temperature lead to the underestimation of occurrence of probabilities for these two concurrent extreme modes. This underestimation can also lead to incorrect conclusions and flawed decisions in terms of the severity of these extreme events.
-
Extreme events are widely studied across the world because of their major implications for many aspects of society and especially floods. These events are generally studied in terms of precipitation or temperature extreme indices that are often not adapted for regions affected by floods caused by snowmelt. The rain on snow index has been widely used, but it neglects rain-only events which are expected to be more frequent in the future. In this study, we identified a new winter compound index and assessed how large-scale atmospheric circulation controls the past and future evolution of these events in the Great Lakes region. The future evolution of this index was projected using temperature and precipitation from the Canadian Regional Climate Model large ensemble (CRCM5-LE). These climate data were used as input in Precipitation Runoff Modelling System (PRMS) hydrological model to simulate the future evolution of high flows in three watersheds in southern Ontario. We also used five recurrent large-scale atmospheric circulation patterns in north-eastern North America and identified how they control the past and future variability of the newly created index and high flows. The results show that daily precipitation higher than 10 mm and temperature higher than 5 ∘C were necessary historical conditions to produce high flows in these three watersheds. In the historical period, the occurrences of these heavy rain and warm events as well as high flows were associated with two main patterns characterized by high Z500 anomalies centred on eastern Great Lakes (HP regime) and the Atlantic Ocean (South regime). These hydrometeorological extreme events will still be associated with the same atmospheric patterns in the near future. The future evolution of the index will be modulated by the internal variability of the climate system, as higher Z500 on the east coast will amplify the increase in the number of events, especially the warm events. The relationship between the extreme weather index and high flows will be modified in the future as the snowpack reduces and rain becomes the main component of high-flow generation. This study shows the value of the CRCM5-LE dataset in simulating hydrometeorological extreme events in eastern Canada and better understanding the uncertainties associated with internal variability of climate.