Votre recherche
Résultats 137 ressources
- 
            
        Abstract Debris slide occurrence on treed slopes of northeastern North America is still poorly documented, despite their abundance and their potential to change mountainous landscapes in short periods of time. To provide new information on their spatiotemporal dynamics, a study was undertaken in debris slide paths in the Wildlife Reserve of Port-Cartier-Sept-Iles, on the Quebec North-Shore region of eastern Canada. Tree-ring dating of growth anomalies (impact scars and reaction wood) in nine debris slides allowed the identification of four debris slide events that occurred in 2003, 2006, 2008, and 2010. By comparison to other hillslope processes such as snow avalanches and debris flows, debris slides produce a very strong tree-ring signal. Therefore they do not require a large sample size considering also that they do not occur twice at the same place. The position of growth anomalies within individual tree rings allowed to determine the timing of the debris slide events: injuries located within a ring correspond to debris slides occurring during the growing season, whereas injuries located between the end of a ring and the beginning of the following ring were caused by debris slides occurring during the dormant season. The meteorological data indicate that a daily precipitation of 70mm appears usually sufficient for the occurrence of debris slides. 
- 
            
        Background: Canadian public safety personnel (PSP; e.g., correctional workers, dispatchers, firefighters, paramedics, police officers) are exposed to potentially traumatic events as a function of their work. Such exposures contribute to the risk of developing clinically significant symptoms related to mental disorders. The current study was designed to provide estimates of mental disorder symptom frequencies and severities for Canadian PSP. Methods: An online survey was made available in English or French from September 2016 to January 2017. The survey assessed current symptoms, and participation was solicited from national PSP agencies and advocacy groups. Estimates were derived using well-validated screening measures. Results: There were 5813 participants (32.5% women) who were grouped into 6 categories (i.e., call center operators/dispatchers, correctional workers, firefighters, municipal/provincial police, paramedics, Royal Canadian Mounted Police). Substantial proportions of participants reported current symptoms consistent with 1 (i.e., 15.1%) or more (i.e., 26.7%) mental disorders based on the screening measures. There were significant differences across PSP categories with respect to proportions screening positive based on each measure. Interpretation: The estimated proportion of PSP reporting current symptom clusters consistent with 1 or more mental disorders appears higher than previously published estimates for the general population; however, direct comparisons are impossible because of methodological differences. The available data suggest that Canadian PSP experience substantial and heterogeneous difficulties with mental health and underscore the need for a rigorous epidemiologic study and category-specific solutions. 
- 
            
        Abstract Water table depth in peatlands is strongly linked to physical properties of the peat, such as density (ρ dry ), peat composition and humification, hydraulic conductivity (K), and specific yield (S y ). Dry bulk density and peat depth are commonly used as indicators of K in ecohydrological models. However, no mathematical relationship exists to quantify S y based on K and ρ dry . As a result, ecohydrological models cannot explicitly reproduce the strong buffering capacity of peatlands. The objectives of this study were to analyse the literature‐reported mathematical link between all the physical properties to develop new mathematical relationships between these parameters and to evaluate whether variations in the physical properties of the peat control water table depth in peatlands. Seven peatlands located in the St. Lawrence Lowlands (Québec, Canada) were sampled, and 1 m long peat cores were collected from up‐gradient, mid‐gradient, and down‐gradient zones. All cores were used to measure ρ dry , K, S y , and to estimate peat composition and humification. Statistically significant correlations were found between (a) K and S y (log–log model), (b) K and depth (log–log model), (c) S y and depth (log–log model), (d) ρ dry and S y (log model), and (e) ρ dry and K (log model). No significant difference was found in either K or S y between sites. However, significant differences were found in water table depths. Because they provide a fuller description of the peat properties that control water table depths, these newly developed functions have the potential to improve the capacity of ecohydrological models to simulate time‐varying hydrological conditions. 
- 
            
        Hydrological responses in cold regions are often complex and variable (both spatially and temporally) due to the complex and multiple interactions between the hydrological processes at play. Thus, there is a need to better understand and represent cold region hydrological processes within hydrological models. In this study, a physicallybased hydrological model has been developed using the Cold Regions Hydrological Model (CRHM) platform for the L’Acadie River Catchment in southern Quebec (Canada). Almost 70 % of the catchment is occupied by agricultural fields, being representative of the intensive farming landscape of the southern St-Lawrence lowlands, while the rest is mostly forested. The physical processes including blowing snow, snow interception in canopies, sublimation and snowmelt were simulated over 35 years using the CRHM platform. Hydrologic response units (HRUs), the smallest simulation spatial unit within the catchment, were derived based on the combination of land use/cover and vegetation types. Over the simulation period, considerable spatial variability was detected between agricultural and forested sites. Snow accumulation and associated snow water equivalent (SWE) were found to be higher in forested sites than agricultural sites, which can be explained by blowing snow transport from agricultural sites to the forested sites where aerodynamic roughness is greater. Higher rates of blowing snow sublimation were detected over the agricultural sites compared to snow intercepted in the forest canopies. This can be explained by the fact that there is a great amount of blowing snow over the agricultural sites, and thus available suspended snow for sublimation, while over the forested sites the snow is more firmly retained by the canopies and thus there is less blowing snow and consequently less blowing snow sublimation. In addition, although snow cover duration shows variation over the simulation period, the snow generally lasts longer in forested fields than in agricultural fields. Our findings indicating more snow in forested fields than agricultural (open) fields are contrary to the usual notion that there is less snow accumulation on forest ground due to the high rates of canopy sublimation. However, this is true for the landscapes dominated by forests, while our study area is dominated by agricultural fields, so snow erosion of agricultural fields and snow deposition in forested fields seem to compensate canopy losses. Taken together, it is shown that land use exerts a critical control on snow distributions in this type of landscape, and perhaps on possible implications for future snow hydrology of the catchment. 
- 
            
        In the context of global warming, changes in extreme weather and climate events are expected, particularly those associated with changes in temperature and precipitation regimes and those that will affect coastal areas. The main objectives of this study were to establish the number of extreme events that have occurred in northeastern New Brunswick, Canada in recent history, and to determine whether their occurrence has increased. By using archived regional newspapers and data from three meteorological stations in a national network, the frequency of extreme events in the study area was established for the time period 1950–2012. Of the 282 extreme weather events recorded in the newspaper archives, 70% were also identified in the meteorological time series analysis. The discrepancy might be explained by the synergistic effect of co-occurring non-extreme events, and increased vulnerability over time, resulting from more people and infrastructure being located in coastal hazard zones. The Mann Kendall and Pettitt statistical tests were used to identify trends and the presence of break points in the weather data time series. Results indicate a statistically significant increase in average temperatures and in the number of extreme events, such as extreme hot days, as well as an increase in total annual and extreme precipitation. A significant decrease in the number of frost-free days and extreme cold days was also found, in addition to a decline in the number of dry days. 
- 
            
        Emergencies and disasters impact population health. Despite the importance of upstream readiness, a persistent challenge for public health practitioners is defining what it means to be prepared. There is a knowledge gap in that existing frameworks lack consideration for complexity relevant to health systems and the emergency context. The objective of this study is to describe the essential elements of a resilient public health system and how the elements interact as a complex adaptive system. 
- 
            
        Abstract Objective To examine mental health and community cohesion in women living in Calgary after a natural disaster considering previously collected mental health data. Methods Data from an ongoing longitudinal cohort, the All Our Families study, were used to examine mental health and community cohesion 5 months after a major flood in Calgary, Canada. Participants who had completed a baseline questionnaire before the flood were eligible for inclusion in this study (N=923). Four multivariable logistic regression models were built to examine predictors of post-traumatic stress, depression, anxiety, and community cohesion. Results Elevated anxiety before the flood was associated with 2.49 (95% CI: 1.17, 5.26) increased odds of experiencing high levels of post-traumatic stress, regardless of whether respondents lived in a flood-risk community or not. Women who experienced damage to property, or who provided help to others, were more likely to perceive an increased sense of community cohesion (adjusted ods ratio (AOR): 1.67; 95% CI: 1.09, 2.54 and AOR: 1.68; 95% CI: 1.13, 2.52, respectively). Conclusions Women with underlying mental health conditions may be more vulnerable to the psychological impacts of a natural disaster regardless of their level of exposure. Natural disasters may bring communities together, especially those who were more tangibly impacted. ( Disaster Med Public Health Preparedness . 2018;12:470–477)