Votre recherche
Résultats 395 ressources
-
Purpose This study investigates why Turkmen women’s traditional handicraft skills have declined and explains how the local, traditional craft skills accelerated the post-flood recovery of Turkmen women in the aftermath of the 2019 Northeast floods in Iran. Design/methodology/approach The research adopts a case study approach, employing reflective thematic analysis. Findings Post-disaster recovery spurred a shift from traditional to modern lifestyles through new housing designs, enhanced female literacy and greater economic participation. However, this transition devalued traditional crafts due to heightened household chores, material scarcity and reduced market demand. Nonetheless, women with craft skills played a pivotal role in household recovery by repairing damaged items and crafting dowries for their daughters, illustrating their contribution to social and economic resilience. Social implications These research findings shed light on the importance of traditional craft skills in enabling the female household member, in particular, to recover from disasters and contribute to the recovery of their households and communities. Originality/value The originality of this study lies in its focus on the specific context of Turkmen women’s traditional craft skills and their role in post-disaster recovery, particularly after the 2019 Northeast floods in Iran. While there is existing research on post-disaster recovery mechanisms, this study uniquely examines the under-researched impact of traditional craft skills on the recovery process, specifically for female household members.
-
Abstract Floods are among the most devastating natural hazards worldwide. While rainfall is the primary trigger of floods, human activities and climate change can exacerbate the impacts of floods and lead to more significant economic and social consequences. In this research, fluvial flood fatalities in the 1951–2020 period have been studied, analyzing the information reported in the Emergency Database (EM‐DAT). The EM‐DAT data were classified into five categories in terms of the number of events and fatalities connected with riverine floods, considering only events that caused more than 10 fatalities. The results show that the severity of flood‐related fatalities is not equally distributed worldwide, but presents specific geographical patterns. The flood fatality coefficient, which represents the ratio between the total number of fatalities and the number of flood events, calculated for different countries, identified that the Southern, Eastern, and South‐Eastern regions of Asia have the deadliest floods in the world. The number of flood events has been increasing since 1951 and peaked in 2007, following a relative decline since then. Though, the resulting fatalities do not follow a statistically significant trend. An analysis of the number of flood events in different decades shows that the 2001–2010 decade saw the highest number of events, which corresponds to the largest precipitation anomaly in the world. The lethality of riverine floods decreased over time, from 412 per flood in 1951–1960 to 67 in the 2011–2020 decade. This declining trend is probably a consequence of a more resilient environment and better risk reduction strategies. Based on the presented data and using regression analysis, relationships between flood fatalities and the number of flood events with population density and gross domestic product are developed and discussed.
-
Prenatal stress alters fetal programming, potentially predisposing the ensuing offspring to long-term adverse health outcomes. To gain insight into environmental influences on fetal development, this QF2011 study evaluated the urinary metabolomes of 4-year-old children (n = 89) who were exposed to the 2011 Queensland flood in utero. Proton nuclear magnetic resonance spectroscopy was used to analyze urinary metabolic fingerprints based on maternal levels of objective hardship and subjective distress resulting from the natural disaster. In both males and females, differences were observed between high and low levels of maternal objective hardship and maternal subjective distress groups. Greater prenatal stress exposure was associated with alterations in metabolites associated with protein synthesis, energy metabolism, and carbohydrate metabolism. These alterations suggest profound changes in oxidative and antioxidative pathways that may indicate a higher risk for chronic non-communicable diseases such obesity, insulin resistance, and diabetes, as well as mental illnesses, including depression and schizophrenia. Thus, prenatal stress-associated metabolic biomarkers may provide early predictors of lifetime health trajectories, and potentially serve as prognostic markers for therapeutic strategies in mitigating adverse health outcomes.
-
Risk management, justice (i.e. equity, fairness), and sustainability are tightly interconnected. This literature review investigates how and why justice is considered in flood risk management. 20 scientific documents published between 2015 and 2020 are analyzed in depth. The results show a distinction between distributive and procedural justice and a complicated judgment of fairness based on different philosophies that vary depending on the country, the type of flood, and the type of strategy studied. Equity is found to be an under-discussed topic compared to its importance. Justice in flood risk management matters because (i) the impacts of floods affect different people unevenly, (ii) the interest in equity evinced by public authorities influences societal transformation, and (iii) the perception of fairness matters at both individual and collective levels. This paper analyzes the link between justice considerations and sustainability in relation to four dimensions: social, ecological, spatial, and temporal. Social and spatial issues are the most commonly studied in the literature, while ecological and temporal ones have generally been overlooked, creating a research gap. The results are discussed in terms of their diversities of justice concepts, places of investigation, and types of strategies. Various justice frameworks are used, but since none of them focus specifically on the contribution of flood risk management to sustainability through justice considerations, a flood risk justice framework is developed, which translates into theoretical and practical tools. It is based on the considerations of both humans and non-humans into different spatio-temporal scales. • Justice issues are under-discussed while they matter for flood risk management. • Diverse case studies in various places show procedural and distributive (in)justice. • There is no agreement in the literature on how to judge the fairness of a strategy. • The literature is mostly limited to social and spatial justice aspects. • Flood risk justice includes social, ecological, spatial, and temporal issues.
-
Abstract Impacts of floods on human society have been drawing increasing human concerns in recent years. In this study, flood observations from EM-DAT (Emergency Events Database) and DFO (Dartmouth Flood Observatory) datasets were analyzed to investigate frequency and intensity of floods, and flood-induced mortality, flood-affected population as well during 1975–2016 across the globe. Results indicated that: (1) occurrence rate of floods, flood-induced mortality and flood-affected population were generally increasing globally. However, flood-induced mortality and flood-affected people per flood event were in slight decrease, indicating that flood-induced mortality and flood-affected people due to increased floods exceeded those by individual flood event; (2) annual variation of mortality per flood event is highly related to floods with higher intensity. Specifically, the flood frequency and flood-induced mortality are the largest in Asia, specifically in China, India, Indonesia and Philippine; while significantly increased flood-affected population and mean annual mortality was detected in China, USA and Australia; (3) tropical cyclones (TC) are closely related to flood-induced mortality in parts of the countries along the western coast of the oceans. The frequency of channel floods in these regions is the largest and large proportion of flood-induced deaths and the highest flood-induced mortality can be attributed to TC-induced flash floods; (4) Population density and GDP per unit area are in significantly positive correlation with the number of flood-related victims per unit area, number of deaths and economic losses with exception of low-income countries. However, the flood-affected population and flood-induced mortality increase with decrease of per capita GDP; while the per capita economic loss increases with the increase of per capita GDP, indicating that the higher the population density and GDP per unit for a region, the higher sensitivity of this area to flood hazards.
-
Gravel-bed rivers are disproportionately important to regional biodiversity, species interactions, connectivity, and conservation. , Gravel-bed river floodplains in mountain landscapes disproportionately concentrate diverse habitats, nutrient cycling, productivity of biota, and species interactions. Although stream ecologists know that river channel and floodplain habitats used by aquatic organisms are maintained by hydrologic regimes that mobilize gravel-bed sediments, terrestrial ecologists have largely been unaware of the importance of floodplain structures and processes to the life requirements of a wide variety of species. We provide insight into gravel-bed rivers as the ecological nexus of glaciated mountain landscapes. We show why gravel-bed river floodplains are the primary arena where interactions take place among aquatic, avian, and terrestrial species from microbes to grizzly bears and provide essential connectivity as corridors for movement for both aquatic and terrestrial species. Paradoxically, gravel-bed river floodplains are also disproportionately unprotected where human developments are concentrated. Structural modifications to floodplains such as roads, railways, and housing and hydrologic-altering hydroelectric or water storage dams have severe impacts to floodplain habitat diversity and productivity, restrict local and regional connectivity, and reduce the resilience of both aquatic and terrestrial species, including adaptation to climate change. To be effective, conservation efforts in glaciated mountain landscapes intended to benefit the widest variety of organisms need a paradigm shift that has gravel-bed rivers and their floodplains as the central focus and that prioritizes the maintenance or restoration of the intact structure and processes of these critically important systems throughout their length and breadth.
-
A landscape is a mosaic of natural and/or artificial communities and wa-terbodies and may contain several distinct ecosystems. Human life depends on many services delivered by the water-based aquatic and land-based terrestrial ecosystems. A wide variety of aquatic ecosystems exist and alt-hough they represent a low percentage of the Earth’s surface, their roles and functions make them crucial. Aquatic ecosystems especially inland aquatic ecosystems are rich in biodiversity and home to a diverse array of species and habitats, providing numerous economic and societal benefits to humans. Understanding diversity of aquatic ecosystems within landscape is a fundamental goal of both basic and applied ecological research. This study recognizes, defines, classifies, characterizes and compares for the first time the aquatic resources vis-à-vis aquatic ecosystems in the landscape of Adilabad District, Telangana, “Deccan Region”, India, which was selected as the study area.
-
Abstract Topo‐bathymetric LiDAR (TBL) can provide a continuous digital elevation model (DEM) for terrestrial and submerged portions of rivers. This very high horizontal spatial resolution and high vertical accuracy data can be promising for flood plain mapping using hydrodynamic models. Despite the increasing number of papers regarding the use of TBL in fluvial environments, its usefulness for flood mapping remains to be demonstrated. This review of real‐world experiments focusses on three research questions related to the relevance of TBL in hydrodynamic modelling for flood mapping at local and regional scales: (i) Is the accuracy of TBL sufficient? (ii) What environmental and technical conditions can optimise the quality of acquisition? (iii) Is it possible to predict which rivers would be good candidates for TBL acquisition? With a root mean square error (RMSE) of 0.16 m, results from real‐world experiments confirm that TBL provides the required vertical accuracy for hydrodynamic modelling. Our review highlighted that environmental conditions, such as turbidity, overhanging vegetation or riverbed morphology, may prove to be limiting factors in the signal's capacity to reach the riverbed. A few avenues have been identified for considering whether TBL acquisition would be appropriate for a specific river. Thresholds should be determined using geometric or morphological criteria, such as rivers with steep slopes, steep riverbanks, and rivers too narrow or with complex morphologies, to avoid compromising the quality or the extent of the coverage. Based on this review, it appears that TBL acquisition conditions for hydrodynamic modelling for flood mapping should optimise the signal's ability to reach the riverbed. However, further research is needed to determine the percentage of coverage required for the use of TBL as a source of bathymetry in a hydrodynamic model, and whether specific river sections must be covered to ensure model performance for flood mapping.
-
<p>Devastating floods in southeast Queensland in 2011 were the combination of flash flooding in the Lockyer Valley with riverine flooding in the Brisbane metropolitan area. While there is considerable information about the immediate impact on those affected, there is less understanding of the long-term health effects that follow such events. This study explored the perceptions of health effects and support received by people affected by the 2011 southeast Queensland flood six years after the event. A cross-sectional survey of 327 people was conducted in areas affected by the floods. The questionnaire sought information about the ongoing social, economic, demographic and self-declared physical and mental health effects. The data were analysed through comparison of those unaffected with those directly affected by the floods. Residents whose households were flooded were more likely to score their health negatively than non-affected residents and had higher reported rates of trauma, injury and mental illness. Twenty-six per cent of this group reported that they still experience some adverse health effects from the floods. Managing the long-term health implications of a flood-affected population is an important public policy task. Dissatisfaction with recovery operations and perceived injustices associated with insurance and compensation arrangements may aggravate health consequences. Early recognition and intervention may assist with reducing secondary effects.</p>
-
This study discusses the flooding related consequences of climate change on most populous Canadian cities and flow regulation infrastructure (FRI). The discussion is based on the aggregated results of historical and projected future flooding frequencies and flood timing as generated by Canada-wide hydrodynamic modelling in a previous study. Impact assessment on 100 most populous Canadian cities indicate that future flooding frequencies in some of the most populous cities such as Toronto and Montreal can be expected to increase from 100 (250) years to 15 (22) years by the end of the 21st century making these cities highest at risk to projected changes in flooding frequencies as a consequence of climate change. Overall 40–60% of the analyzed cities are found to be associated with future increases in flooding frequencies and associated increases in flood hazard and flood risk. The flooding related impacts of climate change on 1072 FRIs located across Canada are assessed both in terms of projected changes in future flooding frequencies and changes in flood timings. Results suggest that 40–50% of the FRIs especially those located in southern Ontario, western coastal regions, and northern regions of Canada can be expected to experience future increases in flooding frequencies. FRIs located in many of these regions are also projected to experience future changes in flood timing underlining that operating rules for those FRIs may need to be reassessed to make them resilient to changing climate.
-
Abstract This work explores the relationship between catchment size, rainfall duration, and future streamflow increases on 133 North American catchments with sizes ranging from 66.5 to 9886 km2. It uses the outputs from a high spatial (0.11°) and temporal (1-h) resolution single model initial-condition large ensemble (SMILE) and a hydrological model to compute extreme rainfall and streamflow for durations ranging from 1 to 72 h and for return periods of between 2 and 300 years. Increases in extreme precipitation are observed across all durations and return periods. The projected increases are strongly related to duration, frequency, and catchment size, with the shortest durations, longest return periods, and smaller catchments witnessing the largest relative rainfall increases. These increases can be quite significant, with the 100-yr rainfall becoming up to 20 times more frequent over the smaller catchments. A similar duration–frequency–size pattern of increases is also observed for future extreme streamflow, but with even larger relative increases. These results imply that future increases in extreme rainfall will disproportionately impact smaller catchments, and particularly so for impervious urban catchments which are typically small, and whose stormwater drainage infrastructures are designed for long-return-period flows, both being conditions for which the amplification of future flow will be maximized.
-
Devastating floods occur regularly around the world. Recently, machine learning models have been used for flood susceptibility mapping. However, even when these algorithms are provided with adequate ground truth training samples, they can fail to predict flood extends reliably. On the other hand, the height above nearest drainage (HAND) model can produce flood prediction maps with limited accuracy. The objective of this research is to produce an accurate and dynamic flood modeling technique to produce flood maps as a function of water level by combining the HAND model and machine learning. In this paper, the HAND model was utilized to generate a preliminary flood map; then, the predictions of the HAND model were used to produce pseudo training samples for a R.F. model. To improve the R.F. training stage, five of the most effective flood mapping conditioning factors are used, namely, Altitude, Slope, Aspect, Distance from River and Land use/cover map. In this approach, the R.F. model is trained to dynamically estimate the flood extent with the pseudo training points acquired from the HAND model. However, due to the limited accuracy of the HAND model, a random sample consensus (RANSAC) method was used to detect outliers. The accuracy of the proposed model for flood extent prediction, was tested on different flood events in the city of Fredericton, NB, Canada in 2014, 2016, 2018, 2019. Furthermore, to ensure that the proposed model can produce accurate flood maps in other areas as well, it was also tested on the 2019 flood in Gatineau, QC, Canada. Accuracy assessment metrics, such as overall accuracy, Cohen’s kappa coefficient, Matthews correlation coefficient, true positive rate (TPR), true negative rate (TNR), false positive rate (FPR) and false negative rate (FNR), were used to compare the predicted flood extent of the study areas, to the extent estimated by the HAND model and the extent imaged by Sentinel-2 and Landsat satellites. The results confirm that the proposed model can improve the flood extent prediction of the HAND model without using any ground truth training data.