Votre recherche
Résultats 128 ressources
-
Abstract Longwave radiation (LR) is one of the energy balance components responsible for warming and cooling water during hot summers. Both downward incoming LR, emitted by the atmosphere, and outgoing LR emitted by the land surface are not widely measured. The influence of clouds on the LR heat budget makes it even harder to establish reliable formulations for all-sky conditions. This paper uses air temperature and cloud cover from the ERA5 reanalysis database to compare 20 models for the downward longwave irradiance (DLI) at Earth’s surface and compare them with ERA5’s DLI product. Our work uses long-time continuous DLI measured data at three stations over Canada, and ERA5 reanalysis, a reliable source for data-scarce regions, such as central British Columbia (Canada). The results show the feasibility of the local calibration of different formulations using ERA5 reanalysis data for all-sky conditions with RMSE metrics ranging from 37.1 to 267.3 W m −2 , which is comparable with ERA5 reanalysis data and can easily be applied at broader scales by implementing it into hydrological models. Moreover, it is shown that ERA5 gridded data for DLI shows the best results with RMSE = 31.7 W m −2 . This higher performance suggests using ERA5 data directly as input data for hydrological and ecological models.
-
Given that flooding episodes are occurring at a greater rate due to climate change, individuals must adopt certain adaptation behaviors to prevent or mitigate the anticipated or negative impact of such events. However, few studies have assessed if and how households and individuals have actually taken action in this regard. Because some individual beliefs can be linked to facilitating factors and barriers to action, a better understanding of the adoption of adaptive behaviors requires a combined analysis of individual psychosocial factors. The purpose of this study was to develop a better understanding of the reasons underlying the adoption of behaviors related to structural adaptation to flooding by people living in or near flood-prone areas in the Province of Québec (Canada). Results of a series of structural equation modeling showed that behavioral, normative and control beliefs were all significant predictors of the respondents' intention to adopt structural flood protective behaviors, with normative beliefs being the strongest. By identifying the best psychosocial predictors of the adoption of such behaviors, the results of this study provide valuable insights regarding the most effective factors to be used in public health messages to promote the adoption of behaviors related to structural adaptation to flooding.
-
Abstract The Chaudière River in Quebec, Canada, is well known for its frequent ice jam flooding events. As part of a larger watershed research program, an extensive field campaign has been carried out during the 2018–2019 and 2019–2020 winter seasons to quantify the spatiotemporal characteristics of the break-up processes along the Chaudière River. The results showed that mid-winter ice jams have formed in the Intermediate Chaudière and persisted until spring break-up. Spring break-ups were initiated in the Upper Chaudière, and then, almost simultaneously, in the Intermediate and Lower Chaudière reaches. The break-up in the Intermediate Chaudière usually lasts longer than the rest of the river since the slope is much milder, and the occurrence of mid-winter ice jams has been seen to delay the ice clearing. A reach-by-reach characterization of the cumulative degree day of thawing and discharge thresholds for the onset of break-up has been identified. During the field campaign, 51 ice jams were documented together with their location, length, date of formation, and the morphological feature triggering jam formation. Break-up patterns, hydrometeorological thresholds of ice mobilization, and ice jam sites identified in this study can serve as a basis for the implementation of an early warning system.
-
Abstract This study confronts the new concept of ‘surface storage’ with the old concept of ‘sponge effect’ to explain the spatio-temporal variability of the annual daily maximum flows measured in 17 watersheds of southern Quebec during the period 1930–2019. The new concept takes into account the hydrological impacts of wetlands and other topographic components of the landscape (lakes, depressions, ditches, etc.) while that of the sponge effect only takes into account the hydrological impacts of wetlands. With regard to spatial variability, the area of wetlands and other water bodies is the variable best correlated negatively with the magnitude but positively with the duration of flows. As for the temporal variability, the application of the long-term trend tests revealed a significant increase in the magnitude and, to a lesser extent, the duration of the flows occurring in the watersheds of the north shore characterized by a greater area of wetlands and other water bodies (>5%). This increase is explained by the fact that the storage capacity of these land types, which remains unchanged over time, does not make it possible to store the surplus runoff water brought by the increase in rainfall during the snowmelt season.
-
Quebec has experienced a significant decrease in the amount of snow and an increase in temperature during the cold season. The objective of this study is to analyze the impacts of these climate changes on the spatio-temporal variability of the daily maximum flows generated by snowmelt in winter and spring using several statistical tests of correlation (spatial variability) and long-term trend (temporal variability). The study is based on the analysis of flows measured in 17 watersheds (1930–2019) grouped into three hydroclimatic regions. Regarding the spatial variability, the correlation analysis revealed that in winter, the flows are positively correlated with the agricultural area and the daily maximum winter temperature. In the spring, the flows are positively correlated with the drainage density and the snowfall but negatively correlated with the area of wetlands and the daily maximum spring temperature. As for temporal variability (long-term trend), the application of eight statistical tests revealed a generalized increase in flows in winter due to early snowmelt. In the spring, despite the decreased snow cover, no negative trend was observed due to the increase in the spring rainfall, which compensates for the decrease in the snowfall. This temporal evolution of flows in the spring does not correspond to the predictions of climate models. These predict a decrease in the magnitude of spring floods due to the decrease in the snowfall in southern Quebec.
-
Modifications to land can serve to jointly reduce risks of floods and droughts to people and to ecosystems. Whether land modifications are implemented will depend on the willingness and ability of a diversity of actors. This article reviews the state of knowledge on land modification use in areas exposed to dual hydrologic risks and the land owners, managers, and users who directly make decisions about action on lands they control. The review presents a typology of land modifications and explains how land modifications interact with the hydrological cycle to reduce risks. It then addresses the roles and perspectives of the land owners, managers, and users undertaking land modifications, summarizing theories explaining motivations for, as well as barriers to and enablers of, land modification implementation. The analysis reveals geographical differences in narratives on land modifications as well as knowledge gaps regarding variation across actors and types of land modifications.
-
Analyse des variables associées aux comportements préventifs à l'inondation, Hountondji, Lionel, 2023, Université Laval. Copyright by the author unless stated otherwise.
-
Purpose Driven by the New Urban Agenda and the Sustainable Development Goals, decision makers have been striving to reorientate policy debates towards the aspiration of achieving urban resilience and monitoring the effectiveness of adaptive measures through the implementation of standardised indicators. Consequently, there has been a rise of indicator systems measuring resilience. This paper aims to argue that the ambition of making cities resilient does not always make them less vulnerable, more habitable, equitable and just. Design/methodology/approach Using an inductive policy analysis of ISO standard 37123:2019 “Sustainable cities and communities — Indicators for resilient cities”, the authors examine the extent to which the root causes of risks are being addressed by the urban resilience agenda. Findings The authors show that the current standardisation of resilience fails to adequately address the political dimension of disaster risk reduction, reducing resilience to a management tool and missing the opportunity to address the socio-political sources of risks. Originality/value Such critical analysis of the Standard is important as it moves away from a hazard-centric approach and, instead, permits to shed light on the socio-political processes of risk creation and to adopt a more nuanced and sensitive understanding of urban characteristics and governance mechanisms.
-
ABSTRACT Large-scale disasters can disproportionately impact different population groups, causing prominent disparity and inequality, especially for the vulnerable and marginalized. Here, we investigate the resilience of human mobility under the disturbance of the unprecedented ‘720’ Zhengzhou flood in China in 2021 using records of 1.32 billion mobile phone signaling generated by 4.35 million people. We find that although pluvial floods can trigger mobility reductions, the overall structural dynamics of mobility networks remain relatively stable. We also find that the low levels of mobility resilience in female, adolescent and older adult groups are mainly due to their insufficient capabilities to maintain business-as-usual travel frequency during the flood. Most importantly, we reveal three types of counter-intuitive, yet widely existing, resilience patterns of human mobility (namely, ‘reverse bathtub’, ‘ever-increasing’ and ‘ever-decreasing’ patterns), and demonstrate a universal mechanism of disaster-avoidance response by further corroborating that those abnormal resilience patterns are not associated with people’s gender or age. In view of the common association between travel behaviors and travelers’ socio-demographic characteristics, our findings provide a caveat for scholars when disclosing disparities in human travel behaviors during flood-induced emergencies.