Votre recherche
Résultats 141 ressources
-
Au printemps 2017 et 2019, plus 300 municipalités du Québec ont été confrontées à de graves inondations qui ont provoqué d’importants dommages aux propriétés, aux biens personnels de milliers de citoyens et à plusieurs infrastructures municipales. Dans le contexte des inondations de 2019, il faut toutefois souligner l’importante différence entre celles vécues par la municipalité de Sainte-Marthe-sur-le-Lac et celles survenues dans les autres municipalités du Québec. À Sainte-Marthe-sur-le-Lac, les inondations ont été soudaines, et rapides, car elles ont été provoquées par la rupture d’une digue. Ce sinistre, de nature anthropique, a occasionné la relocalisation d’urgence de plusieurs centaines de familles. Quant aux autres municipalités, c’est la crue printanière qui a généré des inondations fluviales, un sinistre de cause naturelle, dont l’ampleur et la durée ont dépassé les précédents évènements historiques, y compris ceux de 2017. Lors de ces inondations, les municipalités et divers partenaires gouvernementaux (CIUSSS/CISSS, MSP, SQ…) et certains organismes bénévoles en sécurité civile (Croix-Rouge Canadienne, Armée du Salut, Ambulance St-Jean, etc.), ont déployé leurs intervenants afin d’apporter leur aide et leur soutien aux municipalités et aux personnes sinistrées. Des centaines de policiers, pompiers, employés municipaux, gestionnaires, chefs d’équipe, militaires, intervenants psychosociaux, bénévoles spécialisés en recherche et sauvetage ou en soutien émotionnel ont alors travaillé sans relâche pour assurer la sécurité des personnes et des biens, mais pour aussi amortir, autant que possible, les impacts psychosociaux inévitablement causés par ce type de sinistre. Ce rapport synthèse présente le point de vue d’une centaine d’intervenants, provenant de différentes régions du Québec qui ont contribué à la gestion et la coordination des efforts pour orchestrer la réponse nécessaire lors des inondations de 2019. Ils ont été invités à documenter les stratégies mises en place à court et à moyen terme qui, selon leurs observations, ont contribué à : •Augmenter le sentiment de sécurité des sinistrés ; •Diminuer leur niveau d’anxiété et d’isolement ; et •Prévenir la détérioration de leur état de santé physique et psychologique.
-
Atmospheric blockings are generally associated with large-scale high-pressure systems that interrupt west-to-east atmospheric flow in mid and high latitudes. Blockings cause several days of quasi-stationary weather conditions, and therefore can result in monthly or seasonal climate anomalies and extreme weather events on the affected regions. In this paper, the long-term coupled CERA-20C reanalysis data from 1901 to 2010 are used to evaluate the links between blocking events over the North Atlantic north of 35° N, and atmospheric and oceanic modes of climate variability on decadal time scales. This study indicates more frequent and longer lasting blocking events than previous studies using other reanalyses products. A strong relationship was found between North Atlantic blocking events and North Atlantic Oscillation (NAO), Atlantic Multidecadal Oscillation (AMO) and Baffin Island–West Atlantic (BWA) indices, in fall, winter and spring. More blocking events occur during the negative phases of the NAO index and positive phases of the BWA mode. In some situations, the BWA patterns provide clearer links with the North Atlantic blocking occurrence than with the NAO alone. The correlation between the synchronous occurrences of AMO and blocking is generally weak, although it does increase for a lag of about 6–10 years. Convergent cross mapping (CCM) furthermore demonstrates a significant two-way causal effect between blocking occurrences and the NAO and BWA indices. Finally, while we find no significant trends in blocking frequencies over the last 110 years in the Northern Hemisphere, these events become longer lasting in summer and fall, and more intense in spring in the North Atlantic.
-
The article: Atmospheric blocking events in the North Atlantic: trends and links to climate anomalies and teleconnections, written by Hussein Wazneh, Philippe Gachon, René Laprise, Anne de Vernal, Bruno Tremblay was originally published electronically on the publisher’s internet portal (currently SpringerLink) on 5 January 2021 without open access.
-
Dans le contexte du réchauffement planétaire, la relation de Clausius Clapeyron (CC) est utilisée comme un indicateur de l’évolution des précipitations extrêmes. Parmi les théories proposées, nous utilisons dans notre recherche une relation exponentielle qui fait le lien entre l’évolution des centiles les plus extrêmes des précipitations et le changement de la température ΔT dans le climat actuel. Selon cette théorie, les précipitations augmentent au même rythme que la capacité de rétention d'humidité dans l’atmosphère, expliquée par la relation de CC, avec un taux de changement d'environ 7 % par degré Celsius pour des valeurs de température et de pression près de la surface. Ainsi, le présent travail vise à vérifier l’existence de liens physiquement plausibles dans la relation entre les précipitations extrêmes et la température de l’air pour la région du Bassin Versant de la Rivière des Outaouais (BVRO) sur la période 1981-2010, à l’aide des simulations du Modèle Régional Canadien du Climat (MRCC) (versions 5 et 6), développé au centre ESCER, et de deux produits de réanalyses du Centre Européen pour les prévisions météorologiques à moyen terme (CEPMMT) à différentes résolutions spatiales. En général, les précipitations quotidiennes suivent un taux de changement inférieur à celui de CC ; tandis que les précipitations horaires augmentent plus rapidement avec la température. Dans ce dernier cas, pour la simulation du MRCC5 à plus haute résolution spatiale, des taux de changement supérieurs à CC ont même été produits, jusqu’à 10,2 %/°C. Ce travail a également mis en évidence qu’au-delà du seuil de 20°C, la capacité de rétention d'humidité de l’atmosphère n’est pas le seul facteur déterminant pour générer des précipitations extrêmes, et que d’autres facteurs sont à considérer, comme la disponibilité de l'humidité au moment de l'événement de précipitation et la présence de mécanismes dynamiques qui favorisent les mouvements verticaux ascendants. Un comportement sous forme de crochet, qui décrit une augmentation des précipitations jusqu'à un seuil de température, est observé dans la saison estivale avec le MRCC5, mais il a disparu avec les simulations du MRCC6, ce qui pourrait être une conséquence d’avoir seulement une année de simulation disponible ou bien d’une conséquence de la très haute résolution du modèle sur les intervalles de température et sur les effets locaux. En conclusion, l'applicabilité de la relation de CC ne doit pas être généralisée quant à l’étude des précipitations extrêmes, il est également important de considérer l'échelle temporelle, la résolution du modèle utilisé et la saison de l'année. L’évolution de cette relation de CC devrait être évaluée avec des simulations à très haute résolution spatiale (version en développement au centre ESCER), et pour d’autres zones climatiques, sachant que les intervalles de températures et les effets locaux exercent un rôle majeur sur les occurrences et les intensités des fortes précipitations. Ces éléments sont essentiels à intégrer dans le contexte des changements climatiques, en raison des conséquences associées aux fortes précipitations, notamment sur l’occurrence des inondations. _____________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : Clausius-Clapeyron, évènements extrêmes, aléas météorologiques, risques d’inondation, changements climatiques
-
Fluvial flooding in Canada is often snowmelt-driven, thus occurs mostly in spring, and has caused billions of dollars in damage in the past decade alone. In a warmer climate, increasing rainfall and changing snowmelt rates could lead to significant shifts in flood-generating mechanisms. Here, projected changes to flood-generating mechanisms in terms of the relative contribution of snowmelt and rainfall are assessed across Canada, based on an ensemble of transient climate change simulations performed using a state-of-the-art regional climate model. Changes to flood-generating mechanisms are assessed for both a late 21st century, high warming (i.e., Representative Concentration Pathway 8.5) scenario, and in a 2 °C global warming context. Under 2 °C of global warming, the relative contribution of snowmelt and rainfall to streamflow peaks is projected to remain close to that of the current climate, despite slightly increased rainfall contribution. In contrast, a high warming scenario leads to widespread increases in rainfall contribution and the emergence of hotspots of change in currently snowmelt-dominated regions across Canada. In addition, several regions in southern Canada would be projected to become rainfall dominated. These contrasting projections highlight the importance of climate change mitigation, as remaining below the 2 °C global warming threshold can avoid large changes over most regions, implying a low likelihood that expensive flood adaptation measures would be necessary.
-
Abstract Floods are the most frequently occurring natural hazard in Canada. An in‐depth understanding of flood seasonality and its drivers at a national scale is essential. Here, a circular, statistics‐based approach is implemented to understand the seasonality of annual‐maximum floods (streamflow) and to identify their responsible drivers across Canada. Nearly 80% and 70% of flood events were found to occur during spring and summer in eastern and western watersheds across Canada, respectively. Flooding in the eastern and western watersheds was primarily driven by snowmelt and extreme precipitation, respectively. This observation suggests that increases in temperature have led to early spring snowmelt‐induced floods throughout eastern Canada. Our results indicate that precipitation (snowmelt) variability can exert large controls on the magnitude of flood peaks in western (eastern) watersheds in Canada. Further, the nonstationarity of flood peaks is modelled to account for impact of the dynamic behaviour of the identified flood drivers on extreme‐flood magnitude by using a cluster of 74 generalized additive models for location scale and shape models, which can capture both the linear and nonlinear characteristics of flood‐peak changes and can model its dependence on external covariates. Using nonstationary frequency analysis, we find that increasing precipitation and snowmelt magnitudes directly resulted in a significant increase in 50‐year streamflow. Our results highlight an east–west asymmetry in flood seasonality, indicating the existence of a climate signal in flood observations. The understating of flood seasonality and flood responses under the dynamic characteristics of precipitation and snowmelt extremes may facilitate the predictability of such events, which can aid in predicting and managing their impacts.
-
Abstract Study region Canada. Study focus Given the effects of climate change on extreme precipitation, updated Intensity-Duration-Frequency (IDF) relationships have been adopted across Canada. Since the IDFs’ generation is based on the assumption of stationarity, the rainfall statistics information may be unreliable. Recent research is attempting to develop a new methodology to integrate non-stationarity and climate change into IDFs updating process. Up to now, there is no comprehensive evaluation of the IDFs updating procedure at different locations. In this study, we analyzed the combined effect of non-stationarity and climate change on future IDFs at six selected gauging stations across Canada. New hydrological insights for the region A comparison of the updated future IDFs with historical IDFs indicates an intensification of extreme events for all study areas, increasing hazard to them. Sites located in the Northeast coastal region will be the most affected in the future by the extreme precipitation. In addition, there is a clear indication that rare events (100-year return period) will become more frequent (in some cases increase up to 443 % of the water infrastructure risk of failure has been observed). We argue that the above findings (i) offer a new overview of future extreme precipitation across Canada, and (ii) should be considered by the stakeholders with respect to climate change adaptation decisions.
-
In northeastern boreal Canada, the long-term perspective on spring flooding is hampered by the absence of long gage records. Changes in the tree-ring anatomy of periodically flooded trees have allowed the reconstruction of historical floods in unregulated hydrological systems. In regulated rivers, the study of flood rings could recover past flood history, assuming that the effects of hydrological regulation on their production can be understood. This study analyzes the effect of regulation on the flood-ring occurrence (visual intensity and relative frequency) and on ring widths in Fraxinus nigra trees growing at five sites distributed along the Driftwood River floodplain. Driftwood River was regulated by a dam in 1917 that was replaced at the same location in 1953. Ring width revealed little, to no evidence, of the impact of river regulation, in contrast to the flood rings. Prior to 1917, high relative frequencies of well-defined flood rings were recorded during known flood years, as indicated by significant correlations with reconstructed spring discharge of the nearby Harricana River. After the construction and the replacement of the dam, relative frequencies of flood rings and their intensities gradually decreased. Flood-ring relative frequencies after 1917, and particularly after 1953, were mostly composed of weakly defined (less distinct) flood rings with some corresponding to known flood years and others likely reflecting dam management. The strength of the correlations with the instrumental Harricana River discharge also gradually decrease starting after 1917. Compared with upper floodplain trees, shoreline trees at each site recorded flood rings less frequently following the construction of the first but especially of the second dam, indicating that water level regulation limited flooding in the floodplains. Compared with the downstream site to the dam, the upstream ones recorded significantly more flood rings in the postdam period, reemphasizing the importance of considering the position of the site along with the river continuum and site conditions in relation to flood exposure. The results demonstrated that sampling trees in multiple riparian stands and along with various hydrological contexts at a far distance of the dams could help disentangle the flooding signal from the dam management signal.
-
Data include tree-ring widths and wood anatomical chronologies of Pinus banksiana and Fraxinus nigra trees growing in eastern boreal Canada, as well as the reconstructed spring mean temperature, reported in "A 247-years tree-ring reconstruction of spring temperature and relation to spring flooding in eastern boreal Canada" published in "International journal of Climatology" by Nolin et al., 2021. PIBA_FRNI_Chronos.csv, the tree-ring widths and wood anatomical chronologies (1706-2017) used in this study (species and sites are coded as in Table 1); PIBA_FRNI_SampDepth.csv, the annual replication of samples used to produce each chronologies (1706-2017); PIBA_FRNI_RecSpringTemp.csv, the reconstructed mean spring temperature (1770 to 2016) LAT_LON_SpringTemp.kml, the coordinate data for each sampling site: metadatas.txt, a set of self-explanatory instructions and descriptions for data files. All other data are available upon request to the corresponding author at alexandreflorent.nolin@uqat.ca (institutional email), alexandreflorent.nolin@gmail.com (permanent email).
-
Data include flood ring (F1, F2) and earlywood vessel chronologies (MVA, N) derived from black ash (Fraxinus nigra Marsh.) trees growing in eastern boreal Canada near Lake Duparquet (Quebec) reported in "Spatial coherence of the spring flood signal among major river basins of eastern boreal Canada inferred from flood rings" published in "Journal of Hydrology" by Nolin et al. in 2021. F1_F2_chrono.csv, as in Figure 3, the F1 and F2 flood-ring chronologies per sites (sites are coded as in Table 1) with sample replication (n); LAT_LON.kml, the coordinate data for each site and sampled tree; MVA_N_chrono.csv, as in Figure 5, the MVA and N chronologies per river basins (river basins are coded as in Table 1); REC1.csv, the reconstruction of the Harricana River spring discharge from 1771 to 2016 reported in "Multi-century tree-ring anatomical evidence reveals increasing frequency and magnitude of spring discharge and floods in eastern boreal Canada" published in "Global and Planetary Change" by Nolin et al. 2021. metadatas.txt, a set of self-explanatory instructions and descriptions for data files. All other data are available upon request to the corresponding author at alexandreflorent.nolin@uqat.ca (institutional email), alexandreflorent.nolin@gmail.com (permanent email).
-
Abstract With the recent Coupled Model Intercomparison Project Phase 6 (CMIP6), water experts and flood modellers are curious to explore the efficacy of the new and upgraded climate models in representing flood inundation dynamics and how they will be impacted in the future by climate change. In this study, for the first time, we consider the latest group of General Circulation Models (GCMs) from CMIP6 to examine the probable changes in floodplain regimes over Canada. A set of 17 GCMs from Shared Socioeconomic Pathways (SSPs) 4.5 (medium forcing) and 8.5 (high end forcing) common to historical (1980 to 2019), near-future (2021 to 2060), and far-future (2061 to 2100) time-periods are selected. A comprehensive framework consisting of hydrodynamic flood modelling, and statistical experiments are put forward to derive high-resolution Canada-wide floodplain maps for 100 and 200-yr return periods. The changes in floodplain regimes for the future periods are analyzed over drainage basin scale in terms of (i) changes in flood inundation extents, (ii) changes in flood hazards (high and very-high classes), and (iii) changes in flood frequency. Our results show a significant rise (>30%) in flood inundation extents in the future periods; particularly intense over western and eastern regions. The flood hazards are expected to cover ~16% more geographical area of Canada. We also find that large areas in northern and western Canada and a few spots in the eastern parts of Canada will be getting flooded more frequently compared to the historical period. The observations derived from this study are vital for enhancing flood preparedness, optimal land-use planning, and refurbishing both structural and non-structural flood control options for improved resilience. The study instills new knowledge on revamping the existing flood management approaches and adaptation strategies for future protection.