Votre recherche
Résultats 1 120 ressources
-
The long, open-ended period of recovery from a disaster event is the phase of a disaster that the interdisciplinary field of disaster studies struggles to understand. In the process of rebuilding, places do not simply reset – they transform, often in ways that confound any reduction of disaster risk, instead making people and settings more vulnerable to future hazard events. Reducing disaster risk is regarded as a global priority, but policies intended to reduce disaster risk have been largely ineffective. This obduracy represents a grand challenge in disaster studies. Here, I propose that the correlated trends of runaway economic costs of disaster events, growing social inequity, environmental degradation, and resistance to policy intervention in disaster settings are hallmark indicators of a system trap – a dynamic in which self-reinforcing feedbacks drive a system toward an undesirable and seemingly inescapable state, with negative consequences that tend to amplify each other over time. I offer that these trends in disaster settings are the collective expression of an especially powerful and distinct kind of system trap, which here I term the “disaster trap” – a new theoretical concept to help explain and address runaway disaster risk. I suggest that disaster traps are likely strongest in tourism-dominated coastal settings with high exposure to tropical cyclones and colonial histories of racial capitalism, which I explore with an empirical illustration from Antigua & Barbuda. Formalising a linkage between gilded and safe-development traps matters because their effects likely compound each other nonlinearly, such that disaster risk only increases and disaster risk reduction becomes increasingly difficult to achieve. Addressing traps requires understanding them as dynamic systems, described as fundamentally and completely as possible – their components, mechanisms, drivers, and structure – in order to reveal when and where interventions might be most effective at reducing disaster risk.
-
Precipitation and temperature are among major climatic variables that are used to characterize extreme weather events, which can have profound impacts on ecosystems and society. Accurate simulation of these variables at the local scale is essential to adapt urban systems and policies to future climatic changes. However, accurate simulation of these climatic variables is difficult due to possible interdependence and feedbacks among them. In this paper, the concept of copulas was used to model seasonal interdependence between precipitation and temperature. Five copula functions were fitted to grid (approximately 10 km × 10 km) climate data from 1960 to 2013 in southern Ontario, Canada. Theoretical and empirical copulas were then compared with each other to select the most appropriate copula family for this region. Results showed that, of the tested copulas, none of them consistently performed the best over the entire region during all seasons. However, Gumbel copula was the best performer during the winter season, and Clayton performed best in the summer. More variability in terms of best copula was found in spring and fall seasons. By examining the likelihoods of concurrent extreme temperature and precipitation periods including wet/cool in the winter and dry/hot in the summer, we found that ignoring the joint distribution and confounding impacts of precipitation and temperature lead to the underestimation of occurrence of probabilities for these two concurrent extreme modes. This underestimation can also lead to incorrect conclusions and flawed decisions in terms of the severity of these extreme events.
-
Extreme events are widely studied across the world because of their major implications for many aspects of society and especially floods. These events are generally studied in terms of precipitation or temperature extreme indices that are often not adapted for regions affected by floods caused by snowmelt. The rain on snow index has been widely used, but it neglects rain-only events which are expected to be more frequent in the future. In this study, we identified a new winter compound index and assessed how large-scale atmospheric circulation controls the past and future evolution of these events in the Great Lakes region. The future evolution of this index was projected using temperature and precipitation from the Canadian Regional Climate Model large ensemble (CRCM5-LE). These climate data were used as input in Precipitation Runoff Modelling System (PRMS) hydrological model to simulate the future evolution of high flows in three watersheds in southern Ontario. We also used five recurrent large-scale atmospheric circulation patterns in north-eastern North America and identified how they control the past and future variability of the newly created index and high flows. The results show that daily precipitation higher than 10 mm and temperature higher than 5 ∘C were necessary historical conditions to produce high flows in these three watersheds. In the historical period, the occurrences of these heavy rain and warm events as well as high flows were associated with two main patterns characterized by high Z500 anomalies centred on eastern Great Lakes (HP regime) and the Atlantic Ocean (South regime). These hydrometeorological extreme events will still be associated with the same atmospheric patterns in the near future. The future evolution of the index will be modulated by the internal variability of the climate system, as higher Z500 on the east coast will amplify the increase in the number of events, especially the warm events. The relationship between the extreme weather index and high flows will be modified in the future as the snowpack reduces and rain becomes the main component of high-flow generation. This study shows the value of the CRCM5-LE dataset in simulating hydrometeorological extreme events in eastern Canada and better understanding the uncertainties associated with internal variability of climate.
-
This chapter presents current knowledge of observed and projected impacts from extreme weather events, based on recorded events and their losses, as well as studies that project future impacts from anthropogenic climate change. The attribution of past changes in such impacts focuses on the three key drivers: changes in extreme weather hazards that can be due to natural climate variability and anthropogenic climate change, changes in exposure and vulnerability, and risk reduction efforts. The chapter builds on previous assessments of attribution of extreme weather events, to drivers of changes in weather hazard, exposure and vulnerability. Most records of losses from extreme weather consist of information on monetary losses, while several other types of impacts are underrepresented, complicating the assessment of losses and damages. Studies into drivers of losses from extreme weather show that increasing exposure is the most important driver through increasing population and capital assets. Residual losses (after risk reduction and adaptation) from extreme weather have not yet been attributed to anthropogenic climate change. For the Loss and Damage debate, this implies that overall it will remain difficult to attribute this type of losses to greenhouse gas emissions. For the future, anthropogenic climate change is projected to become more important for driving future weather losses upward. However, drivers of exposure and especially changes in vulnerability will interplay. Exposure will continue to lead to risk increases. Vulnerability on the other hand may be further reduced through disaster risk reduction and adaptation. This would reduce additional losses and damages from extreme weather. Yet, at the country scale and particularly in developing countries, there is ample evidence of increasing risk, which calls for significant improvement in climate risk management efforts.
-
In the context of global warming, changes in extreme weather and climate events are expected, particularly those associated with changes in temperature and precipitation regimes and those that will affect coastal areas. The main objectives of this study were to establish the number of extreme events that have occurred in northeastern New Brunswick, Canada in recent history, and to determine whether their occurrence has increased. By using archived regional newspapers and data from three meteorological stations in a national network, the frequency of extreme events in the study area was established for the time period 1950–2012. Of the 282 extreme weather events recorded in the newspaper archives, 70% were also identified in the meteorological time series analysis. The discrepancy might be explained by the synergistic effect of co-occurring non-extreme events, and increased vulnerability over time, resulting from more people and infrastructure being located in coastal hazard zones. The Mann Kendall and Pettitt statistical tests were used to identify trends and the presence of break points in the weather data time series. Results indicate a statistically significant increase in average temperatures and in the number of extreme events, such as extreme hot days, as well as an increase in total annual and extreme precipitation. A significant decrease in the number of frost-free days and extreme cold days was also found, in addition to a decline in the number of dry days.
-
Global warming is expected to affect both the frequency and severity of extreme weather events, though projections of the response of these events to climate warming remain highly uncertain. The range of changes reported in the climate modelling literature is very large, sometimes leading to contradictory results for a given extreme weather event. Much of this uncertainty stems from the incomplete understanding of the physics of extreme weather processes, the lack of representation of mesoscale processes in coarse-resolution climate models, and the effect of natural climate variability at multi-decadal time scales. However, some of the spread in results originates simply from the variety of scenarios for future climate change used to drive climate model simulations, which hampers the ability to make generalizations about predicted changes in extreme weather events. In this study, we present a meta-analysis of the literature on projected future extreme weather events in order to quantify expected changes in weather extremes as a function of a common metric of global mean temperature increases. We find that many extreme weather events are likely to be significantly affected by global warming. In particular, our analysis indicates that the overall frequency of global tropical cyclones could decrease with global warming but that the intensity of these storms, as well as the frequency of the most intense cyclones could increase, particularly in the northwestern Pacific basin. We also found increases in the intensity of South Asian monsoonal rainfall, the frequency of global heavy precipitation events, the number of North American severe thunderstorm days, North American drought conditions, and European heatwaves, with rising global mean temperatures. In addition, the periodicity of the El Niño–Southern Oscillation may decrease, which could, in itself, influence extreme weather frequency in many areas of the climate system.
-
Right after a devastating multi-year drought, a number of flood events with unprecedented spatial extent hit different parts of Iran over the 2-week period of March 17th to April 1st, 2019, causing a human disaster and substantial loss of assets and infrastructure across urban and rural areas. Here, we investigate natural (e.g., rainfall, snow accumulation/melt, soil moisture) and anthropogenic drivers (e.g., deforestation, urbanization, and management practices) of these events using a range of ground-based data and satellite observations. These drivers can range from exceptionally extreme rainfall intensities, to cascades of several extreme and moderate events, and various anthropogenic interventions that exacerbated flooding. Our results reveal strong compounding impacts of natural drivers and anthropogenic triggers in escalating flood risks to unprecedented levels. We argue that a new form of floods, i.e. anthropogenic floods, is becoming more common and should be recognized during the “Anthropocene”. This specific form of floods refers to high to extreme streamflow/runoff events that are primarily caused, or largely exacerbated, by anthropogenic drivers. We demonstrate how the growing risk of anthropogenic floods can be assessed using a wide range of climatic and non-climatic satellite and in-situ data.
-
Abstract The estimation of the Intensity–Duration–Frequency (IDF) relation is often necessary for the planning and design of various hydraulic structures and design storms. It has been an increasingly greater challenge due to climate change conditions. This paper therefore proposes an integrated extreme rainfall modeling software package (SDExtreme) for constructing the IDF relations at a local site in the context of climate change. The proposed tool is based on a temporal downscaling method to describe the relationships between daily and sub-daily extreme precipitation using the scale-invariance General Extreme Value (GEV) distribution. In addition, SDExtreme provides a modified bootstrap technique to determine confidence intervals (CIs) of the estimated IDF curves for current and the future climate conditions. The feasibility and accuracy of SDExtreme were assessed using rainfall data available from the selected rain gauge stations in Quebec and Ontario provinces (Canada) and climate simulations under three different climate change scenarios provided by the Canadian Earth System Model (CanESM2) and the Canadian Regional Climate Model (CanRCM4).
-
This proof-of-concept study couples machine learning and physical modeling paradigms to develop a computationally efficient simulator-emulator framework for generating super-resolution (<250 m) urban climate information, that is required by many sectors. To this end, a regional climate model/simulator is applied over the city of Montreal, for the summers of 2019 and 2020, at 2.5 km (LR) and 250 m (HR) resolutions, which are used to train and validate the proposed super-resolution deep learning (DL) model/emulator. The DL model uses an efficient sub-pixel convolution layer to generate HR information from LR data, with adversarial training applied to improve physical consistency. The DL model reduces temperature errors significantly over urbanized areas present in the LR simulation, while also demonstrating considerable skill in capturing the magnitude and location of heat stress indicators. These results portray the value of the innovative simulator-emulator framework, that can be extended to other seasons/periods, variables and regions.
-
The increase in the frequency of floods, which is a projected consequence of climate change, can have wide-ranging health and economic impacts. To cope with these floods and to reduce their impacts, households can adopt some preventive behaviours. The main goal of this research was to compare the adoption of flood mitigation behaviours in three populations presenting distinctive characteristics with a valid and an invariant measure of behavioural adaptation, as well as a baseline measure (comparison group). The article also aims to test the moderated effect of having experienced a flood on the relation between the perception of risk of being flooded and the adoption of preventive behaviours. A survey was conducted in flood-prone areas and in some areas that were not at risk in Quebec, Canada, through phone interviews. Results confirmed that people who lived in an at-risk area and had experienced past flooding events are more inclined to adopt preventive behaviours than people who lived in an at-risk area but had never experienced such an event, and those who lived outside at-risk areas. In addition, our results indicate that the at-risk population who have never experienced a flood engage in few flood preventive behaviours. This is worrisome, as their rate of adopting adaptive behaviour is very similar to the one seen in populations living outside at-risk areas, despite the increased risk inherent to their situation. This could be partly explained by our data showing that around a quarter of the at-risk population did not know they were living in a flood-prone area. Our results show that communication efforts are necessary in order to better inform the population of the risk related to living in a flood-prone area and that incentives should be developed to help enhance the rate of preventive behaviours in at-risk populations having never experienced a flood.
-
Abstract By using risk-adjusted price signals to transfer responsibility for property-level flood protection and recovery from governments to property owners, flood insurance represents a key tenet of the flood risk management (FRM) paradigm. The Government of Canada has worked with insurers to introduce flood insurance for the first time as a part of a broader shift towards FRM to limit the growing costs of flooding. The viability of flood insurance in Canada, however, has been questioned by research that disputes the utility of purchasing coverage by property owners. This study tested this assumption by drawing on public opinion survey data to assess factors that influence decisions about the utility of insurance. The findings reveal that Canadians have limited knowledge of flood insurance coverage, exhibit a low willingness-to-pay for both insurance and property-level flood protection measures, and expect governments to shoulder much of the financial burden of flood recovery through disaster assistance.
-
Intensity Duration Frequency (IDF) curves are among the most common tools used in water resources management. They are derived from historical rainfall records under the assumption of stationarity. Change of climatic conditions makes the use of historical data for development of IDFs for the future unjustifiable. The IDF_CC, a web based tool, is designed, developed and implemented to allow local water professionals to quickly develop estimates related to the impact of climate change on IDF curves for almost any local rain monitoring station in Canada. The primary objective of the presented work was to standardize the IDF update process and make the results of current research on climate change impacts on IDF curves accessible to everyone. The tool is developed in the form of a decision support system (DSS) and represents an important step in increasing the capacity of Canadian water professionals to respond to the impacts of climate change. Climate change impact on IDF curves investigated.Standardized IDF update process.Two theoretical contributions incorporated: downscaling method and skill score computation method.Web based tool developed and implemented for updating IDF curves under climate change.