Votre recherche
Résultats 846 ressources
-
Abstract The DRASTIC technique is commonly used to assess groundwater vulnerability. The main disadvantage of the DRASTIC method is the difficulty associated with identifying appropriate ratings and weight assignments for each parameter. To mitigate this issue, ratings and weights can be approximated using different methods appropriate to the conditions of the study area. In this study, different linear (i.e., Wilcoxon test and statistical approaches) and nonlinear (Genetic algorithm [GA]) modifications for calibration of the DRASTIC framework using nitrate (NO 3 ) concentrations were compared through the preparation of groundwater vulnerability maps of the Meshqin‐Shahr plain, Iran. Twenty‐two groundwater samples were collected from wells in the study area, and their respective NO 3 concentrations were used to modify the ratings and weights of the DRASTIC parameters. The areas found to have the highest vulnerability were in the eastern, central, and western regions of the plain. Results showed that the modified DRASTIC frameworks performed well, compared to the unmodified DRASTIC. When measured NO 3 concentrations were correlated with the vulnerability indices produced by each method, the unmodified DRASTIC method performed most poorly, and the Wilcoxon–GA–DRASTIC method proved optimal. Compared to the unmodified DRASTIC method with an R 2 of 0.22, the Wilcoxon–GA–DRASTIC obtained a maximum R 2 value of 0.78. Modification of DRASTIC parameter ratings was found to be more efficient than the modification of the weights in establishing an accurately calibrated DRASTIC framework. However, modification of parameter ratings and weights together increased the R 2 value to the highest degree. , Article impact statement : The results showed that both linear and nonlinear methods are useful in modifying the ratings and weights of the DRASTIC method for assessing the groundwater vulnerability.
-
Mapping the delineation of areas that are flooded due to water control infrastructure failure is a critical issue. Practical difficulties often present challenges to the accurate and effective analysis of dam-break hazard areas. Such studies are expensive, lengthy, and require large volumes of incoming data and refined technical skills. The creation of cost-efficient geospatial tools provides rapid and inexpensive estimates of instantaneous dam-break (due to structural failure) flooded areas that complement, but do not replace, the results of hydrodynamic simulations. The current study implements a Geographic Information System (GIS) based method that can provide useful information regarding the delineation of dam-break flood-prone areas in both data-scarce environments and transboundary regions, in the absence of detailed studies. Moreover, the proposed tool enables, without advanced technical skills, the analysis of a wide number of case studies that support the prioritization of interventions, or, in emergency situations, the simulation of numerous initial hypotheses (e.g., the modification of initial water level/volume in the case of limited dam functionality), without incurring high computational time. The proposed model is based on the commonly available data for masonry dams, i.e., dam geometry (e.g., reservoir capacity, dam height, and crest length), and a Digital Elevation Model. The model allows for rapid and cost-effective dam-break hazard mapping by evaluating three components: (i) the dam-failure discharge hydrograph, (ii) the propagation of the flood, and (iii) the delineation of flood-prone areas. The tool exhibited high accuracy and reliability in the identification of hypothetical dam-break flood-prone areas when compared to the results of traditional hydrodynamic approaches, as applied to a dam in Basilicata (Southern Italy). In particular, the over- and under-estimation rates of the proposed tool, for the San Giuliano dam, Basilicata, were evaluated by comparing its outputs with flood inundation maps that were obtained by two traditional methods whil using a one-dimensional and a two-dimensional propagation model, resulting in a specificity value of roughly 90%. These results confirm that most parts of the flood map were correctly classified as flooded by the proposed GIS model. A sensitivity value of over 75% confirms that several zones were also correctly identified as non-flooded. Moreover, the overall effectiveness and reliability of the proposed model were evaluated, for the Gleno Dam (located in the Central Italian Alps), by comparing the results of literature studies concerning the application of monodimensional numerical models and the extent of the flooded area reconstructed by the available historical information, obtaining an accuracy of around 94%. Finally, the computational efficiency of the proposed tool was tested on a demonstrative application of 250 Italian arch and gravity dams. The results, when carried out using a PC, Pentium Intel Core i5 Processor CPU 3.2 GHz, 8 GB RAM, required about 73 min, showing the potential of such a tool applied to dam-break flood mapping for a large number of dams.