Votre recherche
Résultats 151 ressources
-
Several statistical methods were used to analyze the spatio-temporal variability of daily minimum extreme flows (DMEF) in 17 watersheds—divided into three homogenous hydroclimatic regions of southern Quebec—during the transitional seasons (spring and fall), during the 1930–2019 period. Regarding spatial variability, there was a clear difference between the south and north shores of the St. Lawrence River, south of 47° N. DMEF were lower in the more agricultural watersheds on the south shore during transitional seasons compared to those on the north shore. A correlation analysis showed that this difference in flows was mainly due to more agricultural areas ((larger area (>20%) on the south than on the north shore (<5%)). An analysis of the long-term trend of these flows showed that the DMEF of south-shore rivers have increased significantly since the 1960s, during the fall (October to December), due to an increase in rainfall and a reduction in cultivated land, which increased the infiltration in the region. Although there was little difference between the two shores in the spring (April to June), we observed a decrease in minimum extreme flows in half (50%) of the south-shore rivers located north of 47° N.
-
Abstract This study explores the potential impacts of climate change on soil erosion in an agricultural catchment in eastern Canada. The Modified Universal Soil Loss Equation (MUSLE) was used to calculate the sediment yields from the Acadie River Catchment for the historical 1996–2019 period. The runoff variables of the MUSLE were obtained from a physically based hydrological model previously built and validated for the catchment. Then, the hydrological model was perturbed using climate change projections and used to assess the climate sensitivity of the sediment yield. Two runoff types representing possible modes of soil erosion were considered. While type A represents a baseline case in which soil erosion occurs due to surface runoff only, type B is more realistic since it assumed that tile drains also contribute to sediment export, but with a varying efficiency throughout the year. The calibration and validation of the tile efficiency factors against measurements in 2009–2015 for type B suggest that tile drains export the sediments with an efficiency of 20% and 50% in freezing and non-freezing conditions, respectively. Results indicate that tile drains account for 39% of the total annual sediment yield in the present climate. The timing of highest soil erosion shifts from spring to winter in response to warming and wetting, which can be explained by increasing winter runoff caused by shifting snowmelt timing towards winter, a greater number of mid-winter melt events as well as increasing rainfall fractions. The large uncertainties in precipitation projections cascade down to the erosion uncertainties in the more realistic type B, with annual sediment yield increasing or decreasing according to the precipitation uncertainty in a given climate change scenario. This study demonstrates the benefit of conservation and no-till pratices, which could reduce the annual sediment yields by 20% and 60%, respectively, under any given climate change scenario.
-
Introduction Studies have shown that, following psychotherapy for posttraumatic stress disorder (PTSD), symptoms and quality of life (QoL) may improve in many patients, but not always to the same extent. Dysfunctional core beliefs, such as personality beliefs (PB), are associated to psychopathology, including PTSD, and could be associated with the types of coping strategies deployed by an individual. Beliefs and coping strategies were also linked to psychotherapeutic outcomes. Objectives (1) To examine the associations between baseline PB as well as pre- and post-treatment coping strategies; (2) To investigate the mediation effects between PB and the changes in QoL, through changes in coping strategies in a cognitive-behavioral psychotherapy (CBT). Method Seventy-one adults with PTSD participating in a correlational/observational CBT study were assessed for PB before a CBT, as well as for coping strategies and QoL, before and after a CBT. Results PB were generally associated with post-treatment distancing coping. Moreover, changes in distancing coping mediated the relationships between avoidant or dependent PB and psychological QoL improvements. Conclusion This is the first study to show the relationships between PB and coping strategies in PTSD patients, and that higher avoidant or dependent PB predicts a lower reduction in the use of distancing coping through psychotherapy, which is associated with less improvement in psychological QoL. Future studies are needed to further define the role of these variables and target more precisely factors that may hamper the treatment effects of CBT for PTSD.
-
Abstract. Climate change impact studies require a reference climatological dataset providing a baseline period to assess future changes and post-process climate model biases. High-resolution gridded precipitation and temperature datasets interpolated from weather stations are available in regions of high-density networks of weather stations, as is the case in most parts of Europe and the United States. In many of the world's regions, however, the low density of observational networks renders gauge-based datasets highly uncertain. Satellite, reanalysis and merged product datasets have been used to overcome this deficiency. However, it is not known how much uncertainty the choice of a reference dataset may bring to impact studies. To tackle this issue, this study compares nine precipitation and two temperature datasets over 1145 African catchments to evaluate the dataset uncertainty contribution to the results of climate change studies. These deterministic datasets all cover a common 30-year period needed to define the reference period climate. The precipitation datasets include two gauge-only products (GPCC and CPC Unified), two satellite products (CHIRPS and PERSIANN-CDR) corrected using ground-based observations, four reanalysis products (JRA55, NCEP-CFSR, ERA-I and ERA5) and one merged gauged, satellite and reanalysis product (MSWEP). The temperature datasets include one gauged-only (CPC Unified) product and one reanalysis (ERA5) product. All combinations of these precipitation and temperature datasets were used to assess changes in future streamflows. To assess dataset uncertainty against that of other sources of uncertainty, the climate change impact study used a top-down hydroclimatic modeling chain using 10 CMIP5 (fifth Coupled Model Intercomparison Project) general circulation models (GCMs) under RCP8.5 and two lumped hydrological models (HMETS and GR4J) to generate future streamflows over the 2071–2100 period. Variance decomposition was performed to compare how much the different uncertainty sources contribute to actual uncertainty. Results show that all precipitation and temperature datasets provide good streamflow simulations over the reference period, but four precipitation datasets outperformed the others for most catchments. They are, in order, MSWEP, CHIRPS, PERSIANN and ERA5. For the present study, the two-member ensemble of temperature datasets provided negligible levels of uncertainty. However, the ensemble of nine precipitation datasets provided uncertainty that was equal to or larger than that related to GCMs for most of the streamflow metrics and over most of the catchments. A selection of the four best-performing reference datasets (credibility ensemble) significantly reduced the uncertainty attributed to precipitation for most metrics but still remained the main source of uncertainty for some streamflow metrics. The choice of a reference dataset can therefore be critical to climate change impact studies as apparently small differences between datasets over a common reference period can propagate to generate large amounts of uncertainty in future climate streamflows.
-
-
Anthropogenic climate change is currently driving environmental transformation on a scale and at a pace that exceeds historical records. This represents an undeniably serious challenge to existing social, political, and economic systems. Humans have successfully faced similar challenges in the past, however. The archaeological record and Earth archives offer rare opportunities to observe the complex interaction between environmental and human systems under different climate regimes and at different spatial and temporal scales. The archaeology of climate change offers opportunities to identify the factors that promoted human resilience in the past and apply the knowledge gained to the present, contributing a much-needed, long-term perspective to climate research. One of the strengths of the archaeological record is the cultural diversity it encompasses, which offers alternatives to the solutions proposed from within the Western agro-industrial complex, which might not be viable cross-culturally. While contemporary climate discourse focuses on the importance of biodiversity, we highlight the importance of cultural diversity as a source of resilience.
-
Abstract Thresholds in precipitation‐runoff relationships have been observed in numerous studies using scatter plots comparing meteorological factors and hydrologic response metrics. Most thresholds reported in the literature have been identified from relationships between meteorological factors that quantify volumes or depths of water (e.g., total event rainfall) and metrics capturing hydrologic response magnitude (e.g., runoff ratio), with a strong emphasis on hillslopes and catchments in temperate humid environments. Knowledge gaps, however, remain regarding the ubiquity of hydrologic thresholds across different climatic environments and different meteorological factors that affect different response metrics. This study therefore aimed to evaluate relationships for a wide range of meteorological factors and response metrics derived from event‐scale rainfall‐runoff analysis for 21 sites spanning seven contrasting geographic areas. Specifically, meteorological factors quantifying rainfall depth, rainfall intensity, and hydrologic abstractions related to evapotranspiration were considered, along with response metrics that describe response timing and response magnitude, leading to 4,557 relationships being evaluated. While rainfall depth thresholds were observed for most sites, rainfall intensity thresholds were also observed. Additionally, threshold behavior was shown to be sensitive to antecedent conditions over specific durations of time preceding a rainfall‐runoff event. The large number of relationships evaluated in this study allowed for the development of a typology of threshold dynamics and the formulation of hypotheses about dominant hydrological processes. This typology may not only promote standardized threshold descriptions but also make intersite comparisons of nonlinear rainfall‐runoff behavior easier. , Key Points While water volume thresholds dominate the literature, rainfall intensity thresholds were observed even at sites with humid climates Threshold behavior is sensitive to antecedent conditions over specific durations of time preceding a rainfall‐runoff event A newly proposed typology of threshold dynamics may be used toward standardized threshold descriptions and intersite comparisons
-
An integrated framework was employed to develop probabilistic floodplain maps, taking into account hydrologic and hydraulic uncertainties under climate change impacts. To develop the maps, several scenarios representing the individual and compounding effects of the models’ input and parameters uncertainty were defined. Hydrologic model calibration and validation were performed using a Dynamically Dimensioned Search algorithm. A generalized likelihood uncertainty estimation method was used for quantifying uncertainty. To draw on the potential benefits of the proposed methodology, a flash-flood-prone urban watershed in the Greater Toronto Area, Canada, was selected. The developed floodplain maps were updated considering climate change impacts on the input uncertainty with rainfall Intensity–Duration–Frequency (IDF) projections of RCP8.5. The results indicated that the hydrologic model input poses the most uncertainty to floodplain delineation. Incorporating climate change impacts resulted in the expansion of the potential flood area and an increase in water depth. Comparison between stationary and non-stationary IDFs showed that the flood probability is higher when a non-stationary approach is used. The large inevitable uncertainty associated with floodplain mapping and increased future flood risk under climate change imply a great need for enhanced flood modeling techniques and tools. The probabilistic floodplain maps are beneficial for implementing risk management strategies and land-use planning.
-
In recent years, the utility of earlywood vessels anatomical characteristics in identifying and reconstructing hydrological conditions has been fully recognized. In riparian ring-porous species, flood rings have been used to identify discrete flood events, and chronologies developed from cross-sectional lumen areas of earlywood vessels have been used to successfully reconstruct seasonal discharge. In contrast, the utility of the earlywood vessel chronologies in non-riparian habitats has been less compelling. No studies have contrasted within species their earlywood vessel anatomical characteristics, specifically from trees that are inversely exposed to flooding. In this study, earlywood vessel and ring-width chronologies were compared between flooded and non-flooded control Fraxinus nigra trees. The association between chronologies and hydroclimate variables was also assessed. Fraxinus nigra trees from both settings shared similar mean tree-ring width but floodplain trees did produce, on average, thicker earlywood. Vessel chronologies from the floodplain trees generally recorded higher mean sensitivity (standard deviation) and lower autocorrelation than corresponding control chronologies indicating higher year-to-year variations. Principal components analysis (PCA) revealed that control and floodplain chronologies shared little variance indicating habitat-specific signals. At the habitat level, the PCA indicated that vessel characteristics were strongly associated with tree-ring width descriptors in control trees whereas, in floodplain trees, they were decoupled from the width. The most striking difference found between flood exposures related to the chronologies' associations with hydroclimatic variables. Floodplain vessel chronologies were strongly associated with climate variables modulating spring-flood conditions as well as with spring discharge whereas control ones showed weaker and few consistent correlations. Our results illustrated how spring flood conditions modulate earlywood vessel plasticity. In floodplain F. nigra trees, the use of earlywood vessel characteristics could potentially be extended to assess and/or mitigate anthropogenic modifications of hydrological regimes. In absence of major recurring environmental stressors like spring flooding, our results support the idea that the production of continuous earlywood vessel chronologies may be of limited utility in dendroclimatology.
-
Abstract A timely and cost-effective method of creating inundation maps could assist first responders in allocating resources and personnel in the event of a flood or in preparation of a future disaster. The Height Above Nearest Drainage (HAND) model could be implemented into an on-the-fly flood mapping application for a Canada-wide service. The HAND model requires water level (m) data inputs while many sources of hydrological data in Canada only provide discharge (m 3 /sec) data. Synthetic rating curves (SRCs), created using river geometry/characteristics and the Manning’s formula, could be utilized to provide an approximate water level given a discharge input. A challenge with creating SRCs includes representing how multiple different land covers will slow impact flow due to texture and bulky features (i.e., smooth asphalt versus rocky river channel); this relates to the roughness coefficient ( n ). In our study, two methods of representing multiple n values were experimented with (a weighted method and a minimum-median method) and were compared to using a fixed n method. A custom ArcGIS tool, Canadian Estimator of Ratings Curves using HAND and Discharge (CERC-HAND-D), was developed to create SRCs using all three methods. Control data were sourced from gauge stations across Canada in the form of rating curves. Results indicate that in areas with medium to medium–high river gradients (S > 0.002 m/m) or with river reaches under 5 km, the CERC-HAND-D tool creates more accurate SRCs (NRMSE = 3.7–8.8%, Percent Bias = −7.8%—9.4%), with the minimum-median method being the preferred n method.
-
In Canada, climate change is expected to increase the extreme precipitation events by magnitude and frequency, leading to more intense and frequent river flooding. In this study, we attempt to map the flood hazard and damage under projected climate scenarios (2050 and 2080). The study was performed in the two most populated municipalities of the Petite Nation River Watershed, located in southern Quebec (Canada). The methodology follows a modelling approach, in which climate projections are derived from the Hydroclimatic Atlas of Southern Quebec following two representative concentration pathways (RCPs) scenarios, i.e., RCP 4.5 and RCP 8.5. These projections are used to predict future river flows. A frequency analysis was carried out with historical data of the peak flow (period 1969–2018) to derive different return periods (2, 20, and 100 years), which were then fed into the GARI tool (Gestion et Analyse du Risque d’Inondation). This tool is used to simulate flood hazard maps and to quantify future flood risk changes. Projected flood hazard (extent and depth) and damage maps were produced for the two municipalities under current and for future scenarios. The results indicate that the flood frequencies are expected to show a minor decrease in peak flows in the basin at the time horizons, 2050 and 2080. In addition, the depth and inundation areas will not significantly change for two time horizons, but instead show a minor decrease. Similarly, the projected flood damage changes in monetary losses are projected to decrease in the future. The results of this study allow one to identify present and future flood hazards and vulnerabilities, and should help decision-makers and the public to better understand the significance of climate change on flood risk in the Petite Nation River watershed.
-
Abstract Flood risk may differ across income levels. In this paper, I employ unique survey data from more than 8000 households in Germany to derive an integrated flood risk indicator that accounts for local flood exposure, assets-at-risk, housing characteristics, and household coping behavior. The results suggest that low-income households, due to their smaller homes and less valuable assets, face lower monetary flood risks than wealthier households despite the former’s limited capacity to implement protection measures and purchase insurance. Relative to the available financial budget, however, expected flood damage weighs higher for low-income households.