Votre recherche
Résultats 1 020 ressources
-
Abstract. One of the key priorities for disaster risk reduction is to ensure decision makers, stakeholders, and the public understand their exposure to disaster risk, so that they can take protective action. Flood maps are a potentially valuable tool for facilitating this understanding of flood risk, but previous research has found that they vary considerably in availability and quality. Using an evaluation framework comprising nine criteria grounded in existing scholarship, this study assessed the quality of flood maps available to the public in Canadian communities located in designated flood risk areas. It found that flood maps in most municipalities (62 %) are low quality (meeting less than 50 % of the criteria) and the highest score was 78 % (seven of nine criteria met). The findings suggest that a more concerted effort to produce high-quality, publicly accessible flood maps is required to support Canada's international commitment to disaster risk reduction. Further questions surround possible weighting of quality assessment criteria, whether and how individuals seek out flood maps, and how flood risk information could be better communicated using modern technology.
-
Snow avalanches are a major natural hazard for road users and infrastructure in northern Gaspesie. Over the past 11 years, the occurrence of nearly 500 snow avalanches on the two major roads servicing the area was reported. No management program is currently operational. In this study, we analyze the weather patterns promoting snow avalanche initiation and use logistic regression (LR) to calculate the probability of avalanche occurrence on a daily basis. We then test the best LR models over the 2012–2013 season in an operational forecasting perspective: Each day, the probability of occurrence (0–100%) determined by the model was classified into five classes avalanche danger scale. Our results show that avalanche occurrence along the coast is best predicted by 2 days of accrued snowfall [in water equivalent (WE)], daily rainfall, and wind speed. In the valley, the most significant predictive variables are 3 days of accrued snowfall (WE), daily rainfall, and the preceding 2 days of thermal amplitude. The large scree slopes located along the coast and exposed to strong winds tend to be more reactive to direct snow accumulation than the inner-valley slopes. Therefore, the probability of avalanche occurrence increases rapidly during a snowfall. The slopes located in the valley are less responsive to snow loading. The LR models developed prove to be an efficient tool to forecast days with high levels of snow avalanche activity. Finally, we discuss how road maintenance managers can use this forecasting tool to improve decision making and risk rendering on a daily basis.
-
Abstract. In response to the EU Floods Directive (2007/60/EC), flood hazard maps are currently produced all over Europe, reflecting a wider shift in focus from "flood protection" to "risk management", for which not only public authorities but also populations at risk are seen as responsible. By providing a visual image of the foreseen consequences of flooding, flood hazard maps can enhance people's knowledge about flood risk, making them more capable of an adequate response. Current literature, however, questions the maps' awareness raising capacity, arguing that their content and design are rarely adjusted to laypeople's needs. This paper wants to complement this perspective with a focus on risk communication by studying how these tools are disseminated and marketed to the public in the first place. Judging from communication theory, simply making hazard maps publicly available is unlikely to lead to attitudinal or behavioral effects, since this typically requires two-way communication and material or symbolic incentives. Consequently, it is relevant to investigate whether and how local risk managers, who are well positioned to interact with the local population, make use of flood hazard maps for risk communication purposes. A qualitative case study of this issue in the German state of Baden-Württemberg suggests that many municipalities lack a clear strategy for using this new information tool for hazard and risk communication. Four barriers in this regard are identified: perceived disinterest/sufficient awareness on behalf of the population at risk; unwillingness to cause worry or distress; lack of skills and resources; and insufficient support. These barriers are important to address – in research as well as in practice – since it is only if flood hazard maps are used to enhance local knowledge resources that they can be expected to contribute to social capacity building.
-
Flood hazards are the most common and destructive of all natural disasters. For decades, experts have been examining how flood losses can be mitigated. Just as in other risk domains, the study of risk perception and risk communication has gained increasing interest in flood risk management. Because of this research growth, a review of the state of the art in this domain is believed necessary. The review comprises 57 empirically based peer‐reviewed articles on flood risk perception and communication from the Web of Science and Scopus databases. The characteristics of these articles are listed in a comprehensive table, presenting research design, research variables, and key findings. From this review, it follows that the majority of studies are of exploratory nature and have not applied any of the theoretical frameworks that are available in social science research. Consequently, a methodological standardization in measuring and analyzing people's flood risk perceptions and their adaptive behaviors is hardly present. This heterogeneity leads to difficulties in comparing results among studies. It is also shown that theoretical and empirical studies on flood risk communication are nearly nonexistent. The article concludes with a summary on methodological issues in the fields of flood‐risk perception and flood‐risk communication and proposes an agenda for future research.
-
Abstract Ephemeral ponds (EPs) are seasonally flooded isolated wetlands that provide a variety of hydroecological benefits, including the provision of breeding habitat for several amphibian and invertebrate species. However, the lack of their explicit representation in hydrological models limits a comprehensive understanding of their interaction with surrounding landscapes and their vulnerability in the context of human interventions and climate change. The purpose of this research was to improve the isolated wetland module of the Soil Water Assessment Tool (SWAT) to better represent EP hydrology. The changes include (1) representation of groundwater and hypodermic flow as the only inflows from the pond drainage surface, due to the intermittent and negligible presence of inflow from surface runoff in forested ponds, (2) revision of how evapotranspiration within EPs is represented and (3) implementation of distinct volume‐area‐depth relationships for ponds based on their geometrical shape. The accuracy of these improvements was assessed against that of a previous isolated wetland formulation in replicating water depth observations of 10 EPs of a portion of the Kenauk forest (68 km 2 ) in the Canadian Shield of the Outaouais region (Québec, Canada). The comparison results show that the revised SWAT model presented here significantly improves the distinct filling and drying water cycle of EPs (average root mean square error of 0.1 m of the revised model vs. 0.23 m for the original model). Besides, the new module allowed to identify that hypodermic flow, evapotranspiration and seepage to the underlying soil are the main EP source and sinks. The new module also allowed to explicitly quantify the differences in filling/drying pattern of the EPs of the Kenauk forest and unlike the original model structure, the new module was able to closely replicate the interannual variation of spring and annual hydroperiod duration.
-
Purpose Driven by the New Urban Agenda and the Sustainable Development Goals, decision makers have been striving to reorientate policy debates towards the aspiration of achieving urban resilience and monitoring the effectiveness of adaptive measures through the implementation of standardised indicators. Consequently, there has been a rise of indicator systems measuring resilience. This paper aims to argue that the ambition of making cities resilient does not always make them less vulnerable, more habitable, equitable and just. Design/methodology/approach Using an inductive policy analysis of ISO standard 37123:2019 “Sustainable cities and communities — Indicators for resilient cities”, the authors examine the extent to which the root causes of risks are being addressed by the urban resilience agenda. Findings The authors show that the current standardisation of resilience fails to adequately address the political dimension of disaster risk reduction, reducing resilience to a management tool and missing the opportunity to address the socio-political sources of risks. Originality/value Such critical analysis of the Standard is important as it moves away from a hazard-centric approach and, instead, permits to shed light on the socio-political processes of risk creation and to adopt a more nuanced and sensitive understanding of urban characteristics and governance mechanisms.
-
Despite being recognized as a key component of shallow-water ecosystems, submerged aquatic vegetation (SAV) remains difficult to monitor over large spatial scales. Because of SAV’s structuring capabilities, high-resolution monitoring of submerged landscapes could generate highly valuable ecological data. Until now, high-resolution remote sensing of SAV has been largely limited to applications within costly image analysis software. In this paper, we propose an example of an adaptable open-sourced object-based image analysis (OBIA) workflow to generate SAV cover maps in complex aquatic environments. Using the R software, QGIS and Orfeo Toolbox, we apply radiometric calibration, atmospheric correction, a de-striping correction, and a hierarchical iterative OBIA random forest classification to generate SAV cover maps based on raw DigitalGlobe multispectral imagery. The workflow is applied to images taken over two spatially complex fluvial lakes in Quebec, Canada, using Quickbird-02 and Worldview-03 satellites. Classification performance based on training sets reveals conservative SAV cover estimates with less than 10% error across all classes except for lower SAV growth forms in the most turbid waters. In light of these results, we conclude that it is possible to monitor SAV distribution using high-resolution remote sensing within an open-sourced environment with a flexible and functional workflow.
-
Au Québec, chaque année, les inondations printanières présentent un défi majeur pour les autorités québécoises. Ainsi, l'élaboration de nouveaux outils et de nouvelles méthodes pour diffuser et visualiser des données massives spatiotemporelles 3D dynamiques d'inondation est très important afin de mieux comprendre et gérer les risques reliés aux inondations. Cette recherche s'intéresse à la diffusion de données géospatiales massives 3D (modèles de bâtiments 3D, arbres, modèles numériques d'élévation de terrain (MNE), données LiDAR, imageries aériennes, etc.) en relation avec les inondations. Le problème est qu'il n'existe pas, à travers la littérature, des systèmes de diffusion efficaces des données massives 3D adaptées aux besoins de cette recherche. En ce sens, notre objectif général consiste à développer un outil de diffusion des données géospatiales massives 3D qui sont des bâtiments 3D et des modèles de terrains de haute résolution à l'échelle de la province du Québec. Les défis de diffusion du flux de données massives, nous ramènent à considérer la technique de tuilage 3D pour convertir les données brutes en formats et structures vectoriels plus légers et adaptés à la diffusion comme la spécification "3D Tiles" pour tuiler les bâtiments 3D, les nuages de points LiDAR et d'autres modèles géoréférencés 3D et le maillage irrégulier, notamment les TIN, pour tuiler les modèles numériques de terrain. Aussi, l'utilisation des techniques de traitement parallèle permet de gérer efficacement les flux massifs de données et d'améliorer le temps de traitement permettant ainsi la scalabilité et la flexibilité des systèmes existants. A cet effet, deux pipelines de tuilage ont été développés. Le premier pipeline concerne la création des tuiles de bâtiments 3D selon la spécification "3D Tiles". Le deuxième est pour créer des tuiles de terrain basées sur des maillages irréguliers. Ces pipelines sont ensuite intégrés dans un système de traitement distribué basé sur des conteneurs Docker afin de paralléliser les processus de traitements. Afin de tester l'efficacité et la validité du système développé, nous avons testé ce système sur un jeux de données massif d'environ 2.5 millions bâtiments 3D situés au Québec. Ces expérimentations ont permis de valider et de mesurer l'efficacité du système proposé par rapport à sa capacité de se mettre à l'échelle (Scalabilité) pour prendre en charge, efficacement, les flux massifs de données 3D. Ces expérimentations ont aussi permis de mettre en place des démarches d'optimisation permettant une meilleure performance dans la production et la diffusion des tuiles 3D.
-
Les politiques québécoises de prévention des risques liés aux inondations ont été sujettes à débat ces dernières années, avec une remise en cause du modèle centralisé et uniforme à travers le Québec, pour une approche plus intégrée. Celle-ci fait notamment la promotion de mesures axées sur la vulnérabilité et d’une participation plus active des acteurs territoriaux. On en sait toutefois très peu sur les déclinaisons locales de l’approche intégrée dans le contexte québécois. Ce mémoire propose d’interroger les différentes approches locales de la prévention et de soulever les enjeux qu’elles posent du point de vue des autorités qui y participent. L’étude se penche sur le cas des territoires concernés par les inondations du lac des Deux Montagnes (Région hydrographique de l'Outaouais et de Montréal). Le cadre d’analyse met de l’avant l’approche des instruments d’action publique pour comprendre leur appropriation par les acteurs locaux et une approche pragmatique qui consiste à centrer notre regard sur les pratiques et les stratégies de réduction des risques d’inondation. La recherche s’appuie sur trois sources de données : une analyse documentaire des régimes provinciaux de régulation des risques d’inondation, un recensement des pratiques de prévention déployées par les autorités locales concernées par les inondations du lac des Deux Montagnes et une série de 15 entretiens réalisés avec les personnes travaillant au sein de ces différentes autorités. Le cas illustre la difficulté et le faible engagement de prévenir les risques autrement que par l’approche de réduction de l’exposition aux risques imposée par la Politique de protection des rives, du littoral et des plaines inondables (PPRLPI). Toutefois, après les inondations de 2017 et de 2019, des approches alternatives propres aux contextes territoriaux ont été envisagées par différentes organisations. Celles-ci devraient davantage être documentées et mises en débat afin d’envisager un régime provincial de la gestion des risques plus flexible et ouvert à leur coexistence. <br /><br /> Uniformed and centralized model of Quebec's flood prevention policies have been recently debated. Integrated approach to flood risk prevention is now put forward, which focus more on vulnerability and foster an active participation of local authorities. Local declinations of the approach are relatively unknown in Quebec. This study presents different local approaches to flood risk prevention and raise issues they pose from the perspective of local authorities involved. It is based on the authority’s concerns by Lac des Deux Montagnes flooding (Outaouais and Montreal hydrographic region). Combining a political sociology approach to policy instruments and a pragmatic approach, we focus on risk regulation regimes, practices and risk reduction strategies. Three sources of data were used: an analysis of flood risk regulation regimes, an inventory of prevention practices deployed by local authorities and 15 interviews conducted with professionals among these authorities. Results show the difficulty and low commitment to implement local distinct approaches apart from prohibiting and discouraging exposure to flood risk enforced by the Protection Policy for Lakeshores, Riverbanks, Littoral Zones and Floodplains. However, after the floods of 2017 and 2019, alternative strategies specific to different territorial contexts were considered. These should be better documented and debated in order to consider a more flexible and coexistence provincial policy.
-
The potential impacts of floods are of significant concern to our modern society raising the need to identify and quantify all the uncertainties that can impact their simulations. Climate simulations at finer spatial resolutions are expected to bring more confidence in these hydrological simulations. However, the impact of the increasing spatial resolutions of climate simulations on floods simulations has to be evaluated. To address this issue, this paper assesses the sensitivity of summer–fall flood simulations to the Canadian Regional Climate Model (CRCM) grid resolution. Three climate simulations issued from the fifth version of the CRCM (CRCM5) driven by the ERA-Interim reanalysis at 0.44°, 0.22° and 0.11° resolutions are analysed at a daily time step for the 1981–2010 period. Raw CRCM5 precipitation and temperature outputs are used as inputs in the simple lumped conceptual hydrological model MOHYSE to simulate streamflows over 50 Quebec (Canada) basins. Summer–fall flooding is analysed by estimating four flood indicators: the 2-year, 5-year, 10-year and 20-year return periods from the CRCM5-driven streamflows. The results show systematic impacts of spatial resolution on CRCM5 outputs and seasonal flood simulations. Floods simulated with coarser climate datasets present smaller peak discharges than those simulated with the finer climate outputs. Smaller catchments show larger sensitivity to spatial resolution as more detail can be obtained from the finer grids. Overall, this work contributes to understanding the sensitivity of streamflow modelling to the climate model’s resolution, highlighting yet another uncertainty source to consider in hydrological climate change impact studies.
-
Soil moisture is a key variable in Earth systems, controlling the exchange of water and energy between land and atmosphere. Thus, understanding its spatiotemporal distribution and variability is important. Environment and Climate Change Canada (ECCC) has developed a new land surface parameterization, named the Soil, Vegetation, and Snow (SVS) scheme. The SVS land surface scheme features sophisticated parameterizations of hydrological processes, including water transport through the soil. It has been shown to provide more accurate simulations of the temporal and spatial distribution of soil moisture compared to the current operational land surface scheme. Simulation of high resolution soil moisture at the field scale remains a challenge. In this study, we simulate soil moisture maps at a spatial resolution of 100 m using the SVS land surface scheme over an experimental site located in Manitoba, Canada. Hourly high resolution soil moisture maps were produced between May and November 2015. Simulated soil moisture values were compared with estimated soil moisture values using a hybrid retrieval algorithm developed at Agriculture and Agri-Food Canada (AAFC) for soil moisture estimation using RADARSAT-2 Synthetic Aperture Radar (SAR) imagery. Statistical analysis of the results showed an overall promising performance of the SVS land surface scheme in simulating soil moisture values at high resolution scale. Investigation of the SVS output was conducted both independently of the soil texture, and as a function of the soil texture. The SVS model tends to perform slightly better over coarser textured soils (sandy loam, fine sand) than finer textured soils (clays). Correlation values of the simulated SVS soil moisture and the retrieved SAR soil moisture lie between 0.753–0.860 over sand and 0.676-0.865 over clay, with goodness of fit values between 0.567–0.739 and 0.457–0.748, respectively. The Root Mean Square Difference (RMSD) values range between 0.058–0.062 over sand and 0.055–0.113 over clay, with a maximum absolute bias of 0.049 and 0.094 over sand and clay, respectively. The unbiased RMSD values lie between 0.038–0.057 over sand and 0.039–0.064 over clay. Furthermore, results show an Index of Agreement (IA) between the simulated and the derived soil moisture always higher than 0.90.
-
Abstract The snow melt from the High Atlas represents a crucial water resource for crop irrigation in the semiarid regions of Morocco. Recent studies have used assimilation of snow cover area data from high‐resolution optical sensors to compute the snow water equivalent and snow melt in other mountain regions. These techniques however require large model ensembles, and therefore it is a challenge to determine the adequate model resolution that yields accurate results with reasonable computation time. Here we study the sensitivity of an energy balance model to the resolution of the model grid for a pilot catchment in the High Atlas. We used a time series of 8‐m resolution snow cover area maps with an average revisit time of 7.5 days to evaluate the model results. The digital elevation model was generated from Pléiades stereo images and resampled from 8 to 30, 90, 250, 500, and 1,000 m. The results indicate that the model performs well from 8 to 250 m but the agreement with observations drops at 500 m. This is because significant features of the topography were too smoothed out to properly characterize the spatial variability of meteorological forcing, including solar radiation. We conclude that a resolution of 250 m might be sufficient in this area. This result is consistent with the shape of the semivariogram of the topographic slope, suggesting that this semivariogram analysis could be used to transpose our conclusion to other study regions. , Key Points A distributed energy balance snow model is applied in the High Atlas for the first time The model performance decreases at resolution coarser than 250 m This result is consistent with the semivariogram of the topographic slope