Votre recherche
Résultats 886 ressources
-
How decentralized government structure influences public service delivery has been a major focus of debate in the public finance literature. In this paper, we empirically examine the effect of fiscal decentralization on natural disaster damages across the U.S. states. We construct a unique measure of decentralization using state and local government expenditures on natural resources, which include investment in flood control and mitigation measures, among others. Using state‐level panel data from 1982 to 2011, we find that states that are more decentralized in natural resource expenditures have experienced more economic losses from floods and storms. This effect is only pronounced in states that are at higher risks of flooding. Our findings suggest that fiscal decentralization may lead to inefficient protection against natural disasters and provide implications for the assignment of disaster management responsibilities across different levels of government in the U.S. federal system.
-
The effects of wetlands on stream flows are well established, namely mitigating flow regimes through water storage and slow water release. However, their effectiveness in reducing flood peaks and sustaining low flows is mainly driven by climate conditions and wetland type with respect to their connectivity to the hydrographic network (i.e. isolated or riparian wetlands). While some studies have demonstrated these hydrological functions/services, few of them have focused on the benefits to the hydrological regimes and their evolution under climate change (CC) and, thus, some gaps persist. The objective of this study was to further advance our knowledge with that respect. The PHYSITEL/HYDROTEL modelling platform was used to assess current and future states of watershed hydrology of the Becancour and Yamaska watersheds, Quebec, Canada. Simulation results showed that CC will induce similar changes on mean seasonal flows, namely larger and earlier spring flows leading to decreases in summer and fall flows. These expected changes will have different effects on 20-year and 100-year peak flows with respect to the considered watershed. Nevertheless, conservation of current wetland states should: (i) for the Becancour watershed, mitigate the potential increase in 2-year, 20-year and 100-year peak flows; and (ii) for the Yamaska watershed, accentuate the potential decrease in the aforementioned indicators. However, any loss of existing wetlands would be detrimental for 7-day 2-year and 10-year as well as 30-day 5-year low flows.
-
ABSTRACTThis work explores the ability of two methodologies in downscaling hydrological indices characterizing the low flow regime of three salmon rivers in Eastern Canada: Moisie, Romaine and Ouelle. The selected indices describe four aspects of the low flow regime of these rivers: amplitude, frequency, variability and timing. The first methodology (direct downscaling) ascertains a direct link between large-scale atmospheric variables (the predictors) and low flow indices (the predictands). The second (indirect downscaling) involves downscaling precipitation and air temperature (local climate variables) that are introduced into a hydrological model to simulate flows. Synthetic flow time series are subsequently used to calculate the low flow indices. The statistical models used for downscaling low flow hydrological indices and local climate variables are: Sparse Bayesian Learning and Multiple Linear Regression. The results showed that direct downscaling using Sparse Bayesian Learning surpassed the other a...
-
Precipitation and temperature are among major climatic variables that are used to characterize extreme weather events, which can have profound impacts on ecosystems and society. Accurate simulation of these variables at the local scale is essential to adapt urban systems and policies to future climatic changes. However, accurate simulation of these climatic variables is difficult due to possible interdependence and feedbacks among them. In this paper, the concept of copulas was used to model seasonal interdependence between precipitation and temperature. Five copula functions were fitted to grid (approximately 10 km × 10 km) climate data from 1960 to 2013 in southern Ontario, Canada. Theoretical and empirical copulas were then compared with each other to select the most appropriate copula family for this region. Results showed that, of the tested copulas, none of them consistently performed the best over the entire region during all seasons. However, Gumbel copula was the best performer during the winter season, and Clayton performed best in the summer. More variability in terms of best copula was found in spring and fall seasons. By examining the likelihoods of concurrent extreme temperature and precipitation periods including wet/cool in the winter and dry/hot in the summer, we found that ignoring the joint distribution and confounding impacts of precipitation and temperature lead to the underestimation of occurrence of probabilities for these two concurrent extreme modes. This underestimation can also lead to incorrect conclusions and flawed decisions in terms of the severity of these extreme events.
-
Extreme events are widely studied across the world because of their major implications for many aspects of society and especially floods. These events are generally studied in terms of precipitation or temperature extreme indices that are often not adapted for regions affected by floods caused by snowmelt. The rain on snow index has been widely used, but it neglects rain-only events which are expected to be more frequent in the future. In this study, we identified a new winter compound index and assessed how large-scale atmospheric circulation controls the past and future evolution of these events in the Great Lakes region. The future evolution of this index was projected using temperature and precipitation from the Canadian Regional Climate Model large ensemble (CRCM5-LE). These climate data were used as input in Precipitation Runoff Modelling System (PRMS) hydrological model to simulate the future evolution of high flows in three watersheds in southern Ontario. We also used five recurrent large-scale atmospheric circulation patterns in north-eastern North America and identified how they control the past and future variability of the newly created index and high flows. The results show that daily precipitation higher than 10 mm and temperature higher than 5 ∘C were necessary historical conditions to produce high flows in these three watersheds. In the historical period, the occurrences of these heavy rain and warm events as well as high flows were associated with two main patterns characterized by high Z500 anomalies centred on eastern Great Lakes (HP regime) and the Atlantic Ocean (South regime). These hydrometeorological extreme events will still be associated with the same atmospheric patterns in the near future. The future evolution of the index will be modulated by the internal variability of the climate system, as higher Z500 on the east coast will amplify the increase in the number of events, especially the warm events. The relationship between the extreme weather index and high flows will be modified in the future as the snowpack reduces and rain becomes the main component of high-flow generation. This study shows the value of the CRCM5-LE dataset in simulating hydrometeorological extreme events in eastern Canada and better understanding the uncertainties associated with internal variability of climate.
-
This chapter presents current knowledge of observed and projected impacts from extreme weather events, based on recorded events and their losses, as well as studies that project future impacts from anthropogenic climate change. The attribution of past changes in such impacts focuses on the three key drivers: changes in extreme weather hazards that can be due to natural climate variability and anthropogenic climate change, changes in exposure and vulnerability, and risk reduction efforts. The chapter builds on previous assessments of attribution of extreme weather events, to drivers of changes in weather hazard, exposure and vulnerability. Most records of losses from extreme weather consist of information on monetary losses, while several other types of impacts are underrepresented, complicating the assessment of losses and damages. Studies into drivers of losses from extreme weather show that increasing exposure is the most important driver through increasing population and capital assets. Residual losses (after risk reduction and adaptation) from extreme weather have not yet been attributed to anthropogenic climate change. For the Loss and Damage debate, this implies that overall it will remain difficult to attribute this type of losses to greenhouse gas emissions. For the future, anthropogenic climate change is projected to become more important for driving future weather losses upward. However, drivers of exposure and especially changes in vulnerability will interplay. Exposure will continue to lead to risk increases. Vulnerability on the other hand may be further reduced through disaster risk reduction and adaptation. This would reduce additional losses and damages from extreme weather. Yet, at the country scale and particularly in developing countries, there is ample evidence of increasing risk, which calls for significant improvement in climate risk management efforts.
-
In the context of global warming, changes in extreme weather and climate events are expected, particularly those associated with changes in temperature and precipitation regimes and those that will affect coastal areas. The main objectives of this study were to establish the number of extreme events that have occurred in northeastern New Brunswick, Canada in recent history, and to determine whether their occurrence has increased. By using archived regional newspapers and data from three meteorological stations in a national network, the frequency of extreme events in the study area was established for the time period 1950–2012. Of the 282 extreme weather events recorded in the newspaper archives, 70% were also identified in the meteorological time series analysis. The discrepancy might be explained by the synergistic effect of co-occurring non-extreme events, and increased vulnerability over time, resulting from more people and infrastructure being located in coastal hazard zones. The Mann Kendall and Pettitt statistical tests were used to identify trends and the presence of break points in the weather data time series. Results indicate a statistically significant increase in average temperatures and in the number of extreme events, such as extreme hot days, as well as an increase in total annual and extreme precipitation. A significant decrease in the number of frost-free days and extreme cold days was also found, in addition to a decline in the number of dry days.
-
Global warming is expected to affect both the frequency and severity of extreme weather events, though projections of the response of these events to climate warming remain highly uncertain. The range of changes reported in the climate modelling literature is very large, sometimes leading to contradictory results for a given extreme weather event. Much of this uncertainty stems from the incomplete understanding of the physics of extreme weather processes, the lack of representation of mesoscale processes in coarse-resolution climate models, and the effect of natural climate variability at multi-decadal time scales. However, some of the spread in results originates simply from the variety of scenarios for future climate change used to drive climate model simulations, which hampers the ability to make generalizations about predicted changes in extreme weather events. In this study, we present a meta-analysis of the literature on projected future extreme weather events in order to quantify expected changes in weather extremes as a function of a common metric of global mean temperature increases. We find that many extreme weather events are likely to be significantly affected by global warming. In particular, our analysis indicates that the overall frequency of global tropical cyclones could decrease with global warming but that the intensity of these storms, as well as the frequency of the most intense cyclones could increase, particularly in the northwestern Pacific basin. We also found increases in the intensity of South Asian monsoonal rainfall, the frequency of global heavy precipitation events, the number of North American severe thunderstorm days, North American drought conditions, and European heatwaves, with rising global mean temperatures. In addition, the periodicity of the El Niño–Southern Oscillation may decrease, which could, in itself, influence extreme weather frequency in many areas of the climate system.
-
Right after a devastating multi-year drought, a number of flood events with unprecedented spatial extent hit different parts of Iran over the 2-week period of March 17th to April 1st, 2019, causing a human disaster and substantial loss of assets and infrastructure across urban and rural areas. Here, we investigate natural (e.g., rainfall, snow accumulation/melt, soil moisture) and anthropogenic drivers (e.g., deforestation, urbanization, and management practices) of these events using a range of ground-based data and satellite observations. These drivers can range from exceptionally extreme rainfall intensities, to cascades of several extreme and moderate events, and various anthropogenic interventions that exacerbated flooding. Our results reveal strong compounding impacts of natural drivers and anthropogenic triggers in escalating flood risks to unprecedented levels. We argue that a new form of floods, i.e. anthropogenic floods, is becoming more common and should be recognized during the “Anthropocene”. This specific form of floods refers to high to extreme streamflow/runoff events that are primarily caused, or largely exacerbated, by anthropogenic drivers. We demonstrate how the growing risk of anthropogenic floods can be assessed using a wide range of climatic and non-climatic satellite and in-situ data.
-
Abstract The estimation of the Intensity–Duration–Frequency (IDF) relation is often necessary for the planning and design of various hydraulic structures and design storms. It has been an increasingly greater challenge due to climate change conditions. This paper therefore proposes an integrated extreme rainfall modeling software package (SDExtreme) for constructing the IDF relations at a local site in the context of climate change. The proposed tool is based on a temporal downscaling method to describe the relationships between daily and sub-daily extreme precipitation using the scale-invariance General Extreme Value (GEV) distribution. In addition, SDExtreme provides a modified bootstrap technique to determine confidence intervals (CIs) of the estimated IDF curves for current and the future climate conditions. The feasibility and accuracy of SDExtreme were assessed using rainfall data available from the selected rain gauge stations in Quebec and Ontario provinces (Canada) and climate simulations under three different climate change scenarios provided by the Canadian Earth System Model (CanESM2) and the Canadian Regional Climate Model (CanRCM4).
-
The increase in the frequency of floods, which is a projected consequence of climate change, can have wide-ranging health and economic impacts. To cope with these floods and to reduce their impacts, households can adopt some preventive behaviours. The main goal of this research was to compare the adoption of flood mitigation behaviours in three populations presenting distinctive characteristics with a valid and an invariant measure of behavioural adaptation, as well as a baseline measure (comparison group). The article also aims to test the moderated effect of having experienced a flood on the relation between the perception of risk of being flooded and the adoption of preventive behaviours. A survey was conducted in flood-prone areas and in some areas that were not at risk in Quebec, Canada, through phone interviews. Results confirmed that people who lived in an at-risk area and had experienced past flooding events are more inclined to adopt preventive behaviours than people who lived in an at-risk area but had never experienced such an event, and those who lived outside at-risk areas. In addition, our results indicate that the at-risk population who have never experienced a flood engage in few flood preventive behaviours. This is worrisome, as their rate of adopting adaptive behaviour is very similar to the one seen in populations living outside at-risk areas, despite the increased risk inherent to their situation. This could be partly explained by our data showing that around a quarter of the at-risk population did not know they were living in a flood-prone area. Our results show that communication efforts are necessary in order to better inform the population of the risk related to living in a flood-prone area and that incentives should be developed to help enhance the rate of preventive behaviours in at-risk populations having never experienced a flood.
-
Intensity Duration Frequency (IDF) curves are among the most common tools used in water resources management. They are derived from historical rainfall records under the assumption of stationarity. Change of climatic conditions makes the use of historical data for development of IDFs for the future unjustifiable. The IDF_CC, a web based tool, is designed, developed and implemented to allow local water professionals to quickly develop estimates related to the impact of climate change on IDF curves for almost any local rain monitoring station in Canada. The primary objective of the presented work was to standardize the IDF update process and make the results of current research on climate change impacts on IDF curves accessible to everyone. The tool is developed in the form of a decision support system (DSS) and represents an important step in increasing the capacity of Canadian water professionals to respond to the impacts of climate change. Climate change impact on IDF curves investigated.Standardized IDF update process.Two theoretical contributions incorporated: downscaling method and skill score computation method.Web based tool developed and implemented for updating IDF curves under climate change.
-
The impacts of natural disasters are often disproportionally borne by poor or otherwise marginalized groups. However, while disaster risk modelling studies have made progress in quantifying the exposure of populations, limited advances have been made in determining the socioeconomic characteristics of these exposed populations. Here, we generate synthetic structural and socioeconomic microdata for around 9.5 million persons for six districts in Bangladesh as vector points using a combination of spatial microsimulation techniques and dasymetric modelling. We overlay the dataset with satellite-derived flood extents of Cyclone Fani, affecting the region in 2019, quantifying the number of exposed households, their socioeconomic characteristics, and the exposure bias of certain household variables. We demonstrate how combining various modelling techniques could provide novel insights into the exposure of poor and vulnerable groups, which could help inform the emergency response after extreme events as well targeting adaptation options to those most in need of them.
-
Abstract. This article presents a comprehensive hydrometeorological dataset collected over the past two decades throughout the Cordillera Blanca, Peru. The data-recording sites, located in the upper portion of the Rio Santa valley, also known as the Callejon de Huaylas, span an elevation range of 3738–4750 m a.s.l. As many historical hydrological stations measuring daily discharge across the region became defunct after their installation in the 1950s, there was a need for new stations to be installed and an opportunity to increase the temporal resolution of the streamflow observations. Through inter-institutional collaboration, the hydrometeorological network described in this paper was deployed with the goal of evaluating how progressive glacier mass loss was impacting stream hydrology, and understanding better the local manifestation of climate change over diurnal to seasonal and interannual time scales. The four automatic weather stations supply detailed meteorological observations and are situated in a variety of mountain landscapes, with one on a high-mountain pass, another next to a glacial lake, and two in glacially carved valleys. Four additional temperature and relative humidity loggers complement the weather stations within the Llanganuco valley by providing these data across an elevation gradient. The six streamflow gauges are located in tributaries to the Rio Santa and collect high-temporal-resolution runoff data. The datasets presented here are available freely from https://doi.org/10.4211/hs.35a670e6c5824ff89b3b74fe45ca90e0 (Mateo et al., 2021). Combined, the hydrological and meteorological data collected throughout the Cordillera Blanca enable detailed research of atmospheric and hydrological processes in tropical high-mountain terrain.
-
In agricultural watersheds, human interventions such as channel straightening have disrupted the hydrologic connectivity between headwater streams and their riparian environment and have thus undermined the ecological services provided by these small streams. Knowledge of the hydrologic connectivity between these streams and their immediate environment (shallow riparian groundwater in the historical floodplain and on adjacent hillslopes) in human-impacted settings is critical for understanding and restoring these hydrological systems but remains largely incomplete. The objective of this research is to investigate the hydrogeomorphological conditions controlling hydrologic connectivity in the historical floodplain of straightened lowland streams. Detailed measurements on the spatiotemporal variability of groundwater-surface water interactions between straightened reaches, historical floodplain including abandoned meanders, and the adjacent hillslopes were obtained using a dense network of piezometers at two sites in the St. Lawrence Lowlands (Quebec, Canada). Results show that the complex mechanisms controlling hydrologic connectivity in naturally meandering lowland rivers also operate in highly disturbed straightened reaches, despite backfilling and agricultural practices. The pre-straightening hydrogeomorphological configuration of the floodplain partly explains the complex patterns of piezometric fluctuations observed at the sites. The apex of the abandoned meanders stands out as a focal area of hydrologic connectivity as water levels indicate pressure transfer that may reflect flows from the stream, the hillslopes, and the surrounding historical floodplain. These unique field observations suggest that abandoned meanders should be promoted as key elements of restoration strategies in lowland agricultural straightened headwater streams.
-
Abstract During spring 2011, an extreme flood occurred along the Richelieu River located in southern Quebec, Canada. The Richelieu River is the last section of the complex Richelieu basin, which is composed of the large Lake Champlain located in a valley between two large mountains. Previous attempts in reproducing the Richelieu River flow relied on the use of simplified lumped models and showed mixed results. In order to prepare a tool to assess accurately the change of flood recurrences in the future, a state‐of‐the‐art distributed hydrological model was applied over the Richelieu basin. The model setup comprises several novel methods and data sets such as a very high resolution river network, a modern calibration technique considering the net basin supply of Lake Champlain, a new optimization algorithm, and the use of an up‐to‐date meteorological data set to force the model. The results show that the hydrological model is able to satisfactorily reproduce the multiyear mean annual hydrograph and the 2011 flow time series when compared with the observed river flow and an estimation of the Lake Champlain net basin supply. Many factors, such as the quality of the meteorological forcing data, that are affected by the low density of the station network, the steep terrain, and the lake storage effect challenged the simulation of the river flow. Overall, the satisfactory validation of the hydrological model allows to move to the next step, which consists in assessing the impacts of climate change on the recurrence of Richelieu River floods. , Plain Language Summary In order to study the 2011 Richelieu flood and prepare a tool capable of estimating the effects of climate change on the recurrence of floods, a hydrological model is applied over the Richelieu basin. The application of a distributed hydrological model is useful to simulate the flow of all the tributaries of the Richelieu basin. This new model setup stands out from past models due to its distribution in several hydrological units, its high‐resolution river network, the calibration technique, and the high‐resolution weather forcing data set used to drive the model. The model successfully reproduced the 2011 Richelieu River flood and the annual hydrograph. The simulation of the Richelieu flow was challenging due to the contrasted elevation of the Richelieu basin and the presence of the large Lake Champlain that acts as a reservoir and attenuates short‐term fluctuations. Overall, the application was deemed satisfactory, and the tool is ready to assess the impacts of climate change on the recurrence of Richelieu River floods. , Key Points An advanced high‐resolution distributed hydrological model is applied over a U.S.‐Canada transboundary basin The simulated net basin supply of Lake Champlain and the Richelieu River discharge are in good agreement with observations of the 2011 flood The flow simulation is challenging due to the topographic and meteorological complexities of the basin and uncertainties in the observations