Votre recherche
Résultats 1 010 ressources
-
The Canadian Sea Ice and Snow Evolution (CanSISE) Network is a climate research network focused on developing and applying state-of-the-art observational data to advance dynamical prediction, projections, and understanding of seasonal snow cover and sea ice in Canada and the circumpolar Arctic. This study presents an assessment from the CanSISE Network of the ability of the second-generation Canadian Earth System Model (CanESM2) and the Canadian Seasonal to Interannual Prediction System (CanSIPS) to simulate and predict snow and sea ice from seasonal to multi-decadal timescales, with a focus on the Canadian sector. To account for observational uncertainty, model structural uncertainty, and internal climate variability, the analysis uses multi-source observations, multiple Earth system models (ESMs) in Phase5 of the Coupled Model Intercomparison Project (CMIP5), and large initial-condition ensembles of CanESM2 and other models. It is found that the ability of the CanESM2 simulation to capture snow-related climate parameters, such as cold-region surface temperature and precipitation, lies within the range of currently available international models. Accounting for the considerable disagreement among satellite-era observational datasets on the distribution of snow water equivalent, CanESM2 has too much springtime snow mass over Canada, reflecting a broader northern hemispheric positive bias. Biases in seasonal snow cover extent are generally less pronounced. CanESM2 also exhibits retreat of springtime snow generally greater than observational estimates, after accounting for observational uncertainty and internal variability. Sea ice is biased low in the Canadian Arctic, which makes it difficult to assess the realism of long-term sea ice trends there. The strengths and weaknesses of the modelling system need to be understood as a practical tradeoff: the Canadian models are relatively inexpensive computationally because of their moderate resolution, thus enabling their use in operational seasonal prediction and for generating large ensembles of multidecadal simulations. Improvements in climate-prediction systems like CanSIPS rely not just on simulation quality but also on using novel observational constraints and the ready transfer of research to an operational setting. Improvements in seasonal forecasting practice arising from recent research include accurate initialization of snow and frozen soil, accounting for observational uncertainty in forecast verification, and sea ice thickness initialization using statistical predictors available in real time.
-
Climate variability influences the availability of water resources throughout Canada, and projected climate change is anticipated to affect future water availability. This is the first paper of a three-part analysis of water availability indicators in Canada (Parts II and III, this issue). The concept of water availability has been described in different ways in the literature. In Part I, the various approaches for estimating water availability are reviewed and compared, with a focus on Canadian studies. Global examples are used when necessary. The approaches to estimate water availability are organized into three categories: (1) climate-based indicators, (2) hydrology-based indicators and (3) water demand/supply-based indicators. Climate-based indicators use variables such as precipitation, and potential or actual evapotranspiration to calculate water budgets. Widely used meteorological drought indices that calculate moisture surpluses and deficits are also examined. Hydrology-based indicators focus on v...
-
This study quantified the contributions of overland and tile flow to total runoff (sum of overland and tile flow) and nutrient losses in a Vertisolic soil in the Red River valley (Manitoba, Canada), a region with a cold climate where tile drainage is rapidly expanding. Most annual runoff occurred as overland flow (72–89%), during spring snowmelt and large spring and summer storms. Tile drains did not flow in early spring due to frozen ground. Although tiles flowed in late spring and summer (33–100% of event flow), this represented a small volume of annual runoff (10–25%), which is in stark contrast with what has been observed in other tile‐drained landscapes. Median daily flow‐weighted mean concentrations of soluble reactive P (SRP) and total P (TP) were significantly greater in overland flow than in tile flow ( p < 0.001), but the reverse pattern was observed for NO 3 –N ( p < 0.001). Overland flow was the primary export pathway for both P and NO 3 –N, accounting for >95% of annual SRP and TP and 50 to 60% of annual NO 3 –N losses. Data suggest that tile drains do not exacerbate P export from Vertisols in the Red River valley because they are decoupled from the surface by soil‐ice during snowmelt, which is the primary time for P loss. However, NO 3 –N loading to downstream water bodies may be exacerbated by tiles, particularly during spring and summer storms after fertilizer application. Core Ideas Overland flow was the primary pathway for runoff and nutrient loss at field edge. Most runoff and nutrient loss occurred during spring snowmelt and rain events. Tile drains are unlikely to exacerbate P losses from Vertisolic soils. Tile drains may enhance N loading in this region.
-
Seasonal forecasting of spring floods in snow-covered basins is challenging due to the ambiguity in the driving processes, uncertain estimations of antecedent catchment conditions and the choice of predictor variables. In this study we attempt to improve the prediction of spring flow peaks in southern Quebec, Canada, by studying the preconditioning mechanisms of runoff generation and their impact on inter-annual variations in the timing and magnitude of spring peak flow. Historical observations and simulated data from a hydrological and snowmelt model were used to study the antecedent conditions that control flood characteristics in twelve snow-dominated catchments. Maximum snow accumulation (peak SWE), snowmelt and rainfall volume, snowmelt and rainfall intensity, and soil moisture were estimated during the pre-flood period. Stepwise multivariate linear regression analysis was used to identify the most relevant predictors and assess their relative contribution to the interannual variability of flood characteristics. Results show that interannual variations in spring peak flow are controlled differently between basins. Overall, interannual variations in peak flow were mainly governed, in order of importance, by snowmelt intensity, rainfall intensity, snowmelt volume, rainfall volume, peak SWE, and soil moisture. Variations in the timing of peak flow were controlled in most basins by rainfall volume and rainfall and snowmelt intensity. In the northernmost, snow-dominated basins, pre-flood rainfall amount and intensity mostly controlled peak flow variability, whereas in the southern, rainier basins snowpack conditions and melt dynamics controlled this variability. Snowpack interannual variations were found to be less important than variations in rainfall in forested basins, where snowmelt is more gradual. Conversely, peak flow was more sensitive to snowpack conditions in agricultural basins where snowmelt occurs faster. These results highlight the impact of land cover and use on spring flood generation mechanism, and the limited predictability potential of spring floods using simple methods and antecedent hydrological factors.
-
Abstract. Glacier mass balance models are needed at sites with scarce long-term observations to reconstruct past glacier mass balance and assess its sensitivity to future climate change. In this study, North American Regional Reanalysis (NARR) data were used to force a physically based, distributed glacier mass balance model of Saskatchewan Glacier for the historical period 1979–2016 and assess its sensitivity to climate change. A 2-year record (2014–2016) from an on-glacier automatic weather station (AWS) and historical precipitation records from nearby permanent weather stations were used to downscale air temperature, relative humidity, wind speed, incoming solar radiation and precipitation from the NARR to the station sites. The model was run with fixed (1979, 2010) and time-varying (dynamic) geometry using a multitemporal digital elevation model dataset. The model showed a good performance against recent (2012–2016) direct glaciological mass balance observations as well as with cumulative geodetic mass balance estimates. The simulated mass balance was not very sensitive to the NARR spatial interpolation method, as long as station data were used for bias correction. The simulated mass balance was however sensitive to the biases in NARR precipitation and air temperature, as well as to the prescribed precipitation lapse rate and ice aerodynamic roughness lengths, showing the importance of constraining these two parameters with ancillary data. The glacier-wide simulated energy balance regime showed a large contribution (57 %) of turbulent (sensible and latent) heat fluxes to melting in summer, higher than typical mid-latitude glaciers in continental climates, which reflects the local humid “icefield weather” of the Columbia Icefield. The static mass balance sensitivity to climate was assessed for prescribed changes in regional mean air temperature between 0 and 7 ∘C and precipitation between −20 % and +20 %, which comprise the spread of ensemble Representative Concentration Pathway (RCP) climate scenarios for the mid (2041–2070) and late (2071–2100) 21st century. The climate sensitivity experiments showed that future changes in precipitation would have a small impact on glacier mass balance, while the temperature sensitivity increases with warming, from −0.65 to −0.93 m w.e. a−1 ∘C−1. The mass balance response to warming was driven by a positive albedo feedback (44 %), followed by direct atmospheric warming impacts (24 %), a positive air humidity feedback (22 %) and a positive precipitation phase feedback (10 %). Our study underlines the key role of albedo and air humidity in modulating the response of winter-accumulation type mountain glaciers and upland icefield-outlet glacier settings to climate.
-
Abstract Longwave radiation (LR) is one of the energy balance components responsible for warming and cooling water during hot summers. Both downward incoming LR, emitted by the atmosphere, and outgoing LR emitted by the land surface are not widely measured. The influence of clouds on the LR heat budget makes it even harder to establish reliable formulations for all-sky conditions. This paper uses air temperature and cloud cover from the ERA5 reanalysis database to compare 20 models for the downward longwave irradiance (DLI) at Earth’s surface and compare them with ERA5’s DLI product. Our work uses long-time continuous DLI measured data at three stations over Canada, and ERA5 reanalysis, a reliable source for data-scarce regions, such as central British Columbia (Canada). The results show the feasibility of the local calibration of different formulations using ERA5 reanalysis data for all-sky conditions with RMSE metrics ranging from 37.1 to 267.3 W m −2 , which is comparable with ERA5 reanalysis data and can easily be applied at broader scales by implementing it into hydrological models. Moreover, it is shown that ERA5 gridded data for DLI shows the best results with RMSE = 31.7 W m −2 . This higher performance suggests using ERA5 data directly as input data for hydrological and ecological models.
-
Given that flooding episodes are occurring at a greater rate due to climate change, individuals must adopt certain adaptation behaviors to prevent or mitigate the anticipated or negative impact of such events. However, few studies have assessed if and how households and individuals have actually taken action in this regard. Because some individual beliefs can be linked to facilitating factors and barriers to action, a better understanding of the adoption of adaptive behaviors requires a combined analysis of individual psychosocial factors. The purpose of this study was to develop a better understanding of the reasons underlying the adoption of behaviors related to structural adaptation to flooding by people living in or near flood-prone areas in the Province of Québec (Canada). Results of a series of structural equation modeling showed that behavioral, normative and control beliefs were all significant predictors of the respondents' intention to adopt structural flood protective behaviors, with normative beliefs being the strongest. By identifying the best psychosocial predictors of the adoption of such behaviors, the results of this study provide valuable insights regarding the most effective factors to be used in public health messages to promote the adoption of behaviors related to structural adaptation to flooding.
-
Quantification of climate change impacts on the thermal regimes of rivers in British Columbia (BC) is crucial given their importance to aquatic ecosystems. Using the Air2Stream model, we investigate the impact of both air temperature and streamflow changes on river water temperatures from 1950 to 2015 across BC’s 234,000 km2 Fraser River Basin (FRB). Model results show the FRB’s summer water temperatures rose by nearly 1.0°C during 1950–2015 with 0.47°C spread across 17 river sites. For most of these sites, such increases in average summer water temperature have doubled the number of days exceeding 20°C, the water temperature that, if exceeded, potentially increases the physiological stress of salmon during migration. Furthermore, river sites, especially those in the upper and middle FRB, show significant associations between Pacific Ocean teleconnections and regional water temperatures. A multivariate linear regression analysis reveals that air temperature primarily controls simulated water temperatures in the FRB by capturing ~80% of its explained variance with secondary impacts through river discharge. Given such increases in river water temperature, salmon returning to spawn inthe Fraser River and its tributaries are facing continued and increasing physical challenges now and potentially into the future.
-
This study evaluates predictive uncertainties in the snow hydrology of the Fraser River Basin(FRB) of British Columbia(BC), Canada, using the Variable Infiltration Capacity(VIC) model forced with several high-resolution gridded climate datasets. These datasets include the Canadian Precipitation Analysis and the thin-plate smoothing splines(ANUSPLIN), North American Regional Reanalysis(NARR), University of Washington(UW) and Pacific Climate Impacts Consortium(PCIC) gridded products. Uncertainties are evaluated at different stages of the VIC implementation, starting with the driving datasets, optimization of model parameters, and model calibration during cool and warm phases of the Pacific Decadal Oscillation(PDO). The inter-comparison of the forcing datasets (precipitation and air temperature) and their VIC simulations (snow water equivalent – SWE – and runoff) reveals widespread differences over the FRB, especially in mountainous regions. The ANUSPLIN precipitation shows a considerable dry bias in the Rocky Mountains, whereas the NARR winter air temperature is 2°C warmer than the other datasets over most of the FRB. In the VIC simulations, the elevation-dependent changes in the maximum SWE(maxSWE) are more prominent at higher elevations of the Rocky Mountains, where the PCIC-VIC simulation accumulates too much SWE and ANUSPLIN-VIC yields an underestimation. Additionally, at each elevation range, the day of maxSWE varies from 10to 20days between the VIC simulations. The snow melting season begins early in the NARR-VIC simulation, whereas the PCIC-VIC simulation delays the melting, indicating seasonal uncertainty in SWE simulations. When compared with the observed runoff for the Fraser River main stem at Hope, BC, the ANUSPLIN-VIC simulation shows considerable underestimation of runoff throughout the water year owing to reduced precipitation in the ANUSPLIN forcing dataset. The NARR-VIC simulation yields more winter and spring runoff and earlier decline of flows in summer due to a nearly 15-day earlier onset of the FRB springtime snowmelt. Analysis of the parametric uncertainty in the VIC calibration process shows that the choice of the initial parameter range plays a crucial role in defining the model hydrological response for the FRB. Furthermore, the VIC calibration process is biased toward cool and warm phases of the PDO and the choice of proper calibration and validation time periods is important for the experimental setup. Overall the VIC hydrological response is prominently influenced by the uncertainties involved in the forcing datasets rather than those in its parameter optimization and experimental setups.
-
Wastewater surveillance for SARS-CoV-2 RNA is a relatively recent adaptation of long-standing wastewater surveillance for infectious and other harmful agents. Individuals infected with COVID-19 were found to shed SARS-CoV-2 in their faeces. Researchers around the world confirmed that SARS-CoV-2 RNA fragments could be detected and quantified in community wastewater. Canadian academic researchers, largely as volunteer initiatives, reported proof-of-concept by April 2020. National collaboration was initially facilitated by the Canadian Water Network. Many public health officials were initially skeptical about actionable information being provided by wastewater surveillance even though experience has shown that public health surveillance for a pandemic has no single, perfect approach. Rather, different approaches provide different insights, each with its own strengths and limitations. Public health science must triangulate among different forms of evidence to maximize understanding of what is happening or may be expected. Well-conceived, resourced, and implemented wastewater-based platforms can provide a cost-effective approach to support other conventional lines of evidence. Sustaining wastewater monitoring platforms for future surveillance of other disease targets and health states is a challenge. Canada can benefit from taking lessons learned from the COVID-19 pandemic to develop forward-looking interpretive frameworks and capacity to implement, adapt, and expand such public health surveillance capabilities.
-
Une coulee de slush (bouillie de neige fondante) est un ecoulement rapide constitue d’un melange de neige fondante, d’eau, de boue et de debris de toutes sortes. Les sept sites analyses demontrent que les coulees de slush peuvent survenir dans des contextes topographiques fort differents qui presentent toutefois des similitudes au niveau du mode d’enneigement et des conditions hydro-meteorologiques. Les coulees de slush etudiees demarrent dans des ruisseaux d’ordre 1 ou 2, etroits et peu profonds, de pente tres variable (de 1° a plus de 30°), qui sont combles par des bouchons de neige dense soufflee par le vent ou transportee par les avalanches. Parce qu’ils s’opposent a la libre circulation des eaux de fusion lors des periodes de fonte acceleree, ces bouchons de neige favorisent la saturation du manteau neigeux jusqu’a la rupture sous l’effet combine de la pression hydrostatique et de la gravite. Les onze coulees analysees, qui se sont produites entre 1936 et 2013, permettent de definir deux scenarios hydro-meteorologiques propices a leur declenchement : 1) des redoux de longue duree caracterises par des temperatures qui restent positives pendant plusieurs jours consecutifs sans apport de precipitations liquides; 2) des redoux relativement courts (moins de 48 heures) couples a des precipitations liquides abondantes. Largement meconnues au Quebec, les coulees de slush pourraient etre plus frequentes a l’avenir en reponse au rechauffement climatique en cours.
-
Changes in the form of precipitation have a considerable impact on the Arctic cryosphere and ecological system by influencing the energy balance and surface runoff. In this study, station observations and ERA-Interim data were used to analyze changes in the rainfall to precipitation ratio (RPR) in northern Canada during the spring–summer season (March–July) from 1979–2015. Our results indicate that ERA-Interim describes the spring–summer variations and trends in temperature and the RPR well. Both the spring–summer mean temperature [0.4°C–1°C (10 yr)-1] and the RPR [2%–6% (10 yr)-1] increased significantly in the Canadian Arctic Archipelago from 1979–2015. Moreover, we suggest that, aside from the contribution of climate warming, the North Atlantic Oscillation is probably another key factor influencing temporal and spatial differences in the RPR over northern Canada.
-
We analyzed annual peak flow series from 127 naturally flowing or naturalized streamflow gauges across western Canada to examine the impact of the Pacific Decadal Oscillation (PDO) on annual flood risk, which has been previously unexamined in detail. Using Spearman's rank correlation ρ and permutation tests on quantile-quantile plots, we show that higher magnitude floods are more likely during the negative phase of the PDO than during the positive phase (shown at 38% of the stations by Spearman's rank correlations and at 51% of the stations according to the permutation tests). Flood frequency analysis (FFA) stratified according to PDO phase suggests that higher magnitude floods may also occur more frequently during the negative PDO phase than during the positive phase. Our results hold throughout much of this region, with the upper Fraser River Basin, the Columbia River Basin, and the North Saskatchewan River Basin particularly subject to this effect. Our results add to other researchers' work questioning the wholesale validity of the key assumption in FFA that the annual peak flow series at a site is independently and identically distributed. Hence, knowledge of large-scale climate state should be considered prior to the design and construction of infrastructure.
-
Although numerous studies have looked at the long-term trend of the temporal variability of winter temperature and precipitation in southern Quebec, no study has focused on the shifts in series means and the dependence between these two types of climate variables associated with this long-term trend. To fill these gaps, we used the Lombard method to detect the shifts in mean values and the copula method to detect any change in dependence between extreme (maximum and minimum) temperatures and precipitation (snow and rain) over the periods 1950–2000 (17 stations) and 1950–2010 (7 stations). During these two periods, the shifts in mean values of temperature and precipitation were recorded at less than half of the stations. The only significant change observed at the provincial scale is a decrease in the amount of snowfall, which occurred in many cases during the 1970s. This decrease affected stations on the north shore (continental temperate climate) more strongly than stations on the south shore (maritime temperate climate) of the St Lawrence River. However, this decrease in the amount of snowfall had no impact on the dependence over time between temperature and precipitation as snow.
-
ABSTRACTStatistical relationships between weather conditions and the release of snow avalanches in the low-elevation coastal valleys of the northern Gaspe Peninsula are still poorly validated. As s...
-
The objective of this study is to analyze the temporal variability in water levels of Lake Mégantic (27.4 km2) during the period 1920–2020 in relation to anthropogenic and natural factors on the one hand, and its impact on the intensity and frequency of heavy flooding (recurring floods ≥ 10 years) of the Chaudière River of which it is the source, on the other hand. The application of four different Mann–Kendall tests showed a significant decrease in lake water levels during this period. The Lombard test revealed two breaks in the average daily maximum and average water levels, but only one break in the average daily minimum water levels. The first shift, which was smoothed, occurred between 1957 and 1963. It was caused by the demolition in 1956 of the first dam built in 1893 and the significant storage of water in the dams built upstream of the lake between 1956 and 1975. The second shift, which was rather abrupt, occurred between 1990 and 1993. It was caused by the voluntary and controlled lowering of the lake’s water levels in 1993 to increase the surface area of the beaches for recreational purposes. However, despite this influence of anthropogenic factors on this drop in water levels, they are negatively correlated with the global warming climate index. It is therefore a covariation, due to anthropogenic factors whose impacts are exerted at different spatial scales, without a physical causal link. However, the winter daily minimum water levels, whose temporal variability has not been influenced by anthropogenic activities, are positively correlated with the NAO and AO indices, but negatively with PDO. Finally, since the transformation of Lake Mégantic into a reservoir following the construction of the Mégantic dam in 1893 and 1973 to control heavy flooding in the Chaudière River, all recurrent floods ≥ 10 years have completely disappeared in the section of this river located downstream of Lake Mégantic. However, the disappearance of these floods and the drop in water levels of Lake Mégantic have not significantly impacted the stationarity in the flow series of the Chaudière River since 1920.