Votre recherche
Résultats 149 ressources
-
Abstract. In the semiarid Andes of Chile, farmers and industry in the cordillera lowlands depend on water from snowmelt, as annual rainfall is insufficient to meet their needs. Despite the importance of snow cover for water resources in this region, understanding of snow depth distribution and snow mass balance is limited. Whilst the effect of wind on snow cover pattern distribution has been assessed, the relative importance of melt versus sublimation has only been studied at the point scale over one catchment. Analyzing relative ablation rates and evaluating uncertainties are critical for understanding snow depth sensitivity to variations in climate and simulating the evolution of the snowpack over a larger area and over time. Using a distributed snowpack model (SnowModel), this study aims to simulate melt and sublimation rates over the instrumented watershed of La Laguna (513 km2, 3150–5630 m a.s.l., 30∘ S, 70∘ W), during two hydrologically contrasting years (i.e., dry vs. wet). The model is calibrated and forced with meteorological data from nine Automatic Weather Stations (AWSs) located in the watershed and atmospheric simulation outputs from the Weather Research and Forecasting (WRF) model. Results of simulations indicate first a large uncertainty in sublimation-to-melt ratios depending on the forcing as the WRF data have a cold bias and overestimate precipitation in this region. These input differences cause a doubling of the sublimation-to-melt ratio using WRF forcing inputs compared to AWS. Therefore, the use of WRF model output in such environments must be carefully adjusted so as to reduce errors caused by inherent bias in the model data. For both input datasets, the simulations indicate a similar sublimation fraction for both study years, but ratios of sublimation to melt vary with elevation as melt rates decrease with elevation due to decreasing temperatures. Finally results indicate that snow persistence during the spring period decreases the ratio of sublimation due to higher melt rates.
-
This study examines the hydrological sensitivity of an agroforested catchment to changes in temperature and precipitation. A physically based hydrological model was created using the Cold Regions Hydrological Modelling platform to simulate the hydrological processes over 23 years in the Acadie River Catchment in southern Quebec. The observed air temperature and precipitation were perturbed linearly based on existing climate change projections, with warming of up to 8 °C and an increase in total precipitation up to 20%. The results show that warming causes a decrease in blowing snow transport and sublimation losses from blowing snow, canopy-intercepted snowfall and the snowpack. Decreasing blowing snow transport leads to reduced spatial variability in peak snow water equivalent (SWE) and a more synchronized snow cover depletion across the catchment. A 20% increase in precipitation is not sufficient to counteract the decline in annual peak SWE caused by a 1 °C warming. On the other hand, peak spring streamflow increases by 7% and occurs 20 days earlier with a 1 °C warming and a 20% increase in precipitation. However, when warming exceeds 1.5 °C, the catchment becomes more rainfall dominated and the peak flow and its timing follows the rainfall rather than snowmelt regime. Results from this study can be used for sustainable farming development and planning in regions with hydroclimatic characteristics similar to the Acadie River Catchment, where climate change may have a significant impact on the dominating hydrological processes.
-
Scour is a hydraulic risk threatening the stability of bridges in fluvial and coastal areas. Therefore, developing permanent and real-time monitoring techniques is crucial. Recent advances in strain measurements using fiber optic sensors allow new opportunities for scour monitoring. In this study, the innovative optical frequency domain reflectometry (OFDR) was used to evaluate the effect of scour by performing distributed strain measurements along a rod under static lateral loads. An analytical analysis based on the Winkler model of the soil was carefully established and used to evaluate the accuracy of the fiber optic sensors and helped interpret the measurements results. Dynamic tests were also performed and results from static and dynamic tests were compared using an equivalent cantilever model.
-
In Nordic watersheds, estimation of the dynamics of snow water equivalent (SWE) represents a major step toward a satisfactory modeling of the annual hydrograph. For a multilayer, physically-based snow model like MASiN (Modèle Autonome de Simulation de la Neige), the number of modeled snow layers can affect the accuracy of the simulated SWE. The objective of this study was to identify the maximum number of snow layers (MNSL) that would define the trade-off between snowpack stratification and SWE modeling accuracy. Results indicated that decreasing the MNSL reduced the SWE modeling accuracy since the thermal energy balance and the mass balance were less accurately resolved by the model. Nevertheless, from a performance standpoint, SWE modeling can be accurate enough with a MNSL of two (2), with a substantial performance drop for a MNSL value of around nine (9). Additionally, the linear correlation between the values of the calibrated parameters and the MNSL indicated that reducing the latter in MASiN increased the fresh snow density and the settlement coefficient, while the maximum radiation coefficient decreased. In this case, MASiN favored the melting process, and thus the homogenization of snow layers occurred from the top layers of the snowpack in the modeling algorithm.
-
<p>The applicability of the Canadian Precipitation Analysis products known as the Regional Deterministic Precipitation Analysis (CaPA-RDPA) for hydrological modelling in boreal watersheds in Canada, which are constrained with shortage of precipitation information, has been the subject of a number of recent studies. The northern and mid-cordilleran alpine, sub-alpine, and boreal watersheds in Yukon, Canada, are prime examples of such Nordic regions where any hydrological modelling application is greatly scrambled due to lack of accurate precipitation information. In the course of the past few years, proper advancements were tailored to resolve these challenges and a forecasting system was designed at the operational level for short- to medium-range flow and inflow forecasting in major watersheds of interest to Yukon Energy. This forecasting system merges the precipitation products from the North American Ensemble forecasting System (NAEFS) and recorded flows or reconstructed reservoir inflows into the HYDROTEL distributed hydrological model, using the Ensemble Kalman Filtering (EnKF) data assimilation technique. In order to alleviate the adverse effects of scarce precipitation information, the forecasting system also enjoys a snow data assimilation routine in which simulated snowpack water content is updated through a distributed snow correction scheme. Together, both data assimilation schemes offer the system with a framework to accurately estimate flow magnitudes. This robust system not only mitigates the adverse effects of meteorological data constrains in Yukon, but also offers an opportunity to investigate the hydrological footprint of CaPA-RDPA products in Yukon, which is exactly the motivation behind this presentation. However, our overall goal is much more comprehensive as we are trying to elucidate whether assimilating snow monitoring information in a distributed hydrological model could meet the flow estimation accuracy in sparsely gauged basins to the same extent that would be achieved through either (i) the application of precipitation analysis products, or (ii) expanding the meteorological network. A proper answer to this question would provide us with valuable information with respect to the robustness of the snow data assimilation routine in HYDROTEL and the intrinsic added-value of using CaPA-RDPA products in sparsely gauged basins of Yukon.</p>
-
In this work, we develop an enhanced particle shifting strategy in the framework of weakly compressible δ+-SPH method. This technique can be considered as an extension of the so-called improved particle shifting technology (IPST) proposed by Wang et al. (2019). We introduce a new parameter named “ϕ” to the particle shifting formulation, on the one hand to reduce the effect of truncated kernel support on the formulation near the free surface region, on the other hand, to deal with the problem of poor estimation of free surface particles. We define a simple criterion based on the estimation of particle concentration to limit the error’s accumulation in time caused by the shifting in order to achieve a long time violent free surface flows simulation. We propose also an efficient and simple concept for free surface particles detection. A validation of accuracy, stability and consistency of the presented model was shown via several challenging benchmarks.