Votre recherche
Résultats 53 ressources
-
The effects of wetlands on stream flows are well established, namely mitigating flow regimes through water storage and slow water release. However, their effectiveness in reducing flood peaks and sustaining low flows is mainly driven by climate conditions and wetland type with respect to their connectivity to the hydrographic network (i.e. isolated or riparian wetlands). While some studies have demonstrated these hydrological functions/services, few of them have focused on the benefits to the hydrological regimes and their evolution under climate change (CC) and, thus, some gaps persist. The objective of this study was to further advance our knowledge with that respect. The PHYSITEL/HYDROTEL modelling platform was used to assess current and future states of watershed hydrology of the Becancour and Yamaska watersheds, Quebec, Canada. Simulation results showed that CC will induce similar changes on mean seasonal flows, namely larger and earlier spring flows leading to decreases in summer and fall flows. These expected changes will have different effects on 20-year and 100-year peak flows with respect to the considered watershed. Nevertheless, conservation of current wetland states should: (i) for the Becancour watershed, mitigate the potential increase in 2-year, 20-year and 100-year peak flows; and (ii) for the Yamaska watershed, accentuate the potential decrease in the aforementioned indicators. However, any loss of existing wetlands would be detrimental for 7-day 2-year and 10-year as well as 30-day 5-year low flows.
-
ABSTRACTThis work explores the ability of two methodologies in downscaling hydrological indices characterizing the low flow regime of three salmon rivers in Eastern Canada: Moisie, Romaine and Ouelle. The selected indices describe four aspects of the low flow regime of these rivers: amplitude, frequency, variability and timing. The first methodology (direct downscaling) ascertains a direct link between large-scale atmospheric variables (the predictors) and low flow indices (the predictands). The second (indirect downscaling) involves downscaling precipitation and air temperature (local climate variables) that are introduced into a hydrological model to simulate flows. Synthetic flow time series are subsequently used to calculate the low flow indices. The statistical models used for downscaling low flow hydrological indices and local climate variables are: Sparse Bayesian Learning and Multiple Linear Regression. The results showed that direct downscaling using Sparse Bayesian Learning surpassed the other a...
-
Intensity Duration Frequency (IDF) curves are among the most common tools used in water resources management. They are derived from historical rainfall records under the assumption of stationarity. Change of climatic conditions makes the use of historical data for development of IDFs for the future unjustifiable. The IDF_CC, a web based tool, is designed, developed and implemented to allow local water professionals to quickly develop estimates related to the impact of climate change on IDF curves for almost any local rain monitoring station in Canada. The primary objective of the presented work was to standardize the IDF update process and make the results of current research on climate change impacts on IDF curves accessible to everyone. The tool is developed in the form of a decision support system (DSS) and represents an important step in increasing the capacity of Canadian water professionals to respond to the impacts of climate change. Climate change impact on IDF curves investigated.Standardized IDF update process.Two theoretical contributions incorporated: downscaling method and skill score computation method.Web based tool developed and implemented for updating IDF curves under climate change.
-
The impacts of flooding are expected to rise due to population increases, economic growth and climate change. Hence, understanding the physical and spatiotemporal characteristics of risk drivers (hazard, exposure and vulnerability) is required to develop effective flood mitigation measures. Here, the long-term trend in flood vulnerability was analysed globally, calculated from the ratio of the reported flood loss or damage to the modelled flood exposure using a global river and inundation model. A previous study showed decreasing global flood vulnerability over a shorter period using different disaster data. The long-term analysis demonstrated for the first time that flood vulnerability to economic losses in upper-middle, lower-middle and low-income countries shows an inverted U-shape, as a result of the balance between economic growth and various historical socioeconomic efforts to reduce damage, leading to non-significant upward or downward trends. We also show that the flood-exposed population is affected by historical changes in population distribution, with changes in flood vulnerability of up to 48.9%. Both increasing and decreasing trends in flood vulnerability were observed in different countries, implying that population growth scenarios considering spatial distribution changes could affect flood risk projections.
-
Although numerous studies have been conducted on the vulnerability of marginalized groups in the environmental justice (EJ) and hazards fields, analysts have tended to lump people together in broad racial/ethnic categories without regard for substantial within-group heterogeneity. This paper addresses that limitation by examining whether Hispanic immigrants are disproportionately exposed to risks from flood hazards relative to other racial/ethnic groups (including US-born Hispanics), adjusting for relevant covariates. Survey data were collected for 1283 adult householders in the Houston and Miami Metropolitan Statistical Areas (MSAs) and flood risk was estimated using their residential presence/absence within federally-designated 100-year flood zones. Generalized estimating equations (GEE) with binary logistic specifications that adjust for county-level clustering were used to analyze (separately) and compare the Houston (N = 546) and Miami (N = 560) MSAs in order to clarify determinants of household exposure to flood risk. GEE results in Houston indicate that Hispanic immigrants have the greatest likelihood, and non-Hispanic Whites the least likelihood, of residing in a 100-year flood zone. Miami GEE results contrastingly reveal that non-Hispanic Whites have a significantly greater likelihood of residing in a flood zone when compared to Hispanic immigrants. These divergent results suggest that human-flood hazard relationships have been structured differently between the two MSAs, possibly due to the contrasting role that water-based amenities have played in urbanization within the two study areas. Future EJ research and practice should differentiate between Hispanic subgroups based on nativity status and attend to contextual factors influencing environmental risk disparities.
-
INTRODUCTION A substantial body of research has focused on the vulnerability of racial/ethnic minorities to hazards and disasters. This work has lumped people with diverse characteristics into general groups, such as "Hispanic" or "Latino/a" (Bolin 2007). Today, Hispanic immigrants represent an important group in U.S. society due to their large and increasing population. According to American Community Survey estimates, as of 2013 there were 21 million foreign-born Hispanics in the U.S., representing 52.5 percent of the total foreign-born population and 6 percent of the U.S. population. Hispanic immigrants are distinguishable from U.S.--born Hispanics due to their concerns about immigration status as well as cultural and linguistic differences. Treating Hispanics as a homogenous group may mask important differences between foreign-born and U.S.--born Hispanics and lead to erroneous conclusions about their disaster vulnerabilities. In order to address the particular risks experienced by foreign-born Hispanics in the U.S., more research characterizing salient dimensions of their vulnerability to hazards and disasters is needed. This study highlights particular vulnerabilities of foreign-born Hispanics living at risk to flooding and hurricanes in the Houston, Texas, and Miami, Florida, Metropolitan Statistical Areas (MSAs) by examining their self-protective actions, and their perceptions of and knowledge about flood risks, in comparison to both U.S.--born non-Hispanic whites and U.S.--born Hispanics. It addresses two research questions: what differences exist in self-protective actions and perceptions of risk between Hispanic immigrants, U.S.--born Hispanics, and U.S.--born white residents who live at high risk to flooding and hurricanes; and why do differences in self-protective actions and perceptions of risk exist between Hispanic immigrants, U.S.--born Hispanics, and U.S.--born white residents who live at high risk to flooding and hurricanes? Approaching these questions, we analyze primary structured survey and semistructured interview data using a mixed-method analysis approach, which enables us to clarify particular factors that place Hispanic immigrants at increased risk to flood and hurricane disasters. LITERATURE REVIEW The last three decades have marked the emergence of a social-vulnerability perspective on hazards and disasters, which emphasizes the influence of inequalities on differential risks (Hewitt 1983, 1997; Peacock and others 1997; Wisner and others 2004; Tierney 2006; Thomas and others 2013). From this perspective, risk is determined partly by human exposure to a hazard and partly by people's social vulnerability. While there is debate about the meaning and measurement of social vulnerability, the following definition is useful: "the characteristics of a person or group and their situation that influence their capacity to anticipate, cope with, resist and recover from the impact of a natural hazard" (Wisner and others 2004, 11). In this study, we analyze the social vulnerability of Hispanic immigrants in terms of self-protection from flood/hurricane hazards, and perceptions of and knowledge about flood/hurricane risks. Here, self-protection is defined as any structural or nonstructural strategy used by households to minimize loss and enable recovery from the impacts of flood or hurricane hazard exposures (NRC 2006). Self-protection strategies in the context of flood and hurricane hazards include home structural as well as nonstructural actions. Structural mitigation actions include elevating home structures, flood-proofing homes, and installing hurricane shutters (FEMA 2014). They also include nonstructural actions, such as maintaining flood insurance. In terms of nonstructural self-protection strategies, in the U.S., flood insurance plays an important protective role, since it provides compensation for property losses. Disaster preparedness is another dimension of nonstructural self-protection that has been examined extensively (Mulilis and Lippa 1990; Faupel and others 1992; Norris and others 1999; Sattler and others 2000; Miceli and others 2008; Borque and others 2013), and can include evacuation planning, maintaining basic supplies (for example, a first aid kit) and being alert (for example, being attentive to hazard reports). …
-
Abstract The database of the Quebec Ministry of Transport allowed us to analyze the occurrence of ice-block falls and snow avalanches for the past decades along national road 132. The results show that ice structure collapse may be categorized into three distinct phases by using daily temperatures (minimum, maximum, and average) and the cumulative degree day (temperatures above 0°C) since the March 1 st , corresponding to the beginning of the ice wall melting period: 1) a short and intense period of ice-block falls from the mid-April to the beginning of May; 2) a period of constant activity, mainly during the two first weeks of May; and 3) isolated residual activity, with a low frequency of ice-block falls until the month of June. The snow avalanche days were mainly characterized by significant snowfalls or rain-on-snow events with temperature>0°C. The multi-hazard probability was then evaluated based on the timing and relative frequency of ice-block fall and the modeling of sufficient snowpack for avalanching. This simple method to assess the synergistic effect of hillslope processes allows a better understanding of the spring avalanche regime related to the collapse of ice structures. These findings are expected to assist in the management of natural hazards and to improve our knowledge of spatiotemporal dynamics of mass-wasting events on highways.