Votre recherche
Résultats 482 ressources
-
Abstract Flow duration curves (FDC) are used to obtain daily streamflow series at ungauged sites. In this study, functional multiple regression (FMR) is proposed for FDC estimation. Its natural framework for dealing with curves allows obtaining the FDC as a whole instead of a limited number of single points. FMR assessment is performed through a case study in Quebec, Canada. FMR provides a better mean FDC estimation when obtained over sites by considering simultaneously all FDC quantiles in the assessment of each given site. However, traditional regression provides a better mean FDC estimation when obtained over given FDC quantiles by considering all sites in the assessment of each quantile separately. Mean daily streamflow estimation is similar; yet FMR provides an improved estimation for most sites. Furthermore, FMR represents a more suitable framework and provides a number of practical advantages, such as insight into descriptor influence on FDC quantiles. Hence, traditional regression may be preferred if only few FDC quantiles are of interest; whereas FMR would be more suitable if a large number of FDC quantiles is of interest, and therefore to estimate daily streamflows.
-
The moisture maximization approach to estimate the Probable Maximum Precipitation (PMP) has a simple technique for controlling the risk of overestimating PMP: the maximization ratio is limited by an upper bound. The upper bound limit depends on storm records and watershed characteristics. However, it is not readily available in many watersheds. A robust scientific justification for limiting the maximization ratio is missing. In this paper, a novel approach is proposed to estimate the maximization ratio which does not impose an upper limit to the ratio. The new approach, which uses regional climate model data, is based on constructing annual maximum precipitable water time series with precipitable water values for which atmospheric variables are similar to the original event to be maximized. These time series are then used to estimate the 100-year return period precipitable water value required to calculate the maximization ratio. The new approach was tested in three watersheds in the province of Quebec, Canada. Results showed that maximization ratio values were lower than the proposed upper bound value for these watersheds. In comparison to the approach using an upper bound, this proposed approach reduced PMP in these watersheds by 11%. This article is protected by copyright. All rights reserved.
-
Abstract. Measurements of the size and shape of frazil ice particles and flocs in saline water and of frazil ice flocs in freshwater are limited. This study consisted of a series of laboratory experiments producing frazil ice at salinities of 0 ‰, 15 ‰, 25 ‰ and 35 ‰ to address this lack of data. The experiments were conducted in a large tank in a cold room with bottom-mounted propellers to create turbulence. A high-resolution camera system was used to capture images of frazil ice particles and flocs passing through cross-polarizing lenses. The high-resolution images of the frazil ice were processed using a computer algorithm to differentiate particles from flocs and determine key properties including size, concentration and volume. The size and volume distributions of particles and flocs at all four salinities were found to fit log-normal distributions closely. The concentration, mean size, and standard deviation of flocs and particles were assessed at different times during the supercooling process to determine how these properties evolve with time. Comparisons were made to determine the effect of salinity on the properties of frazil ice particles and flocs. The overall mean size of frazil ice particles in saline water and freshwater was found to range between 0.52 and 0.45 mm, with particles sizes in freshwater ∼13 % larger than in saline water. However, qualitative observations showed that frazil ice particles in saline water tend to be more irregularly shaped. The overall mean size of flocs in freshwater was 2.57 mm compared to a mean size of 1.47 mm for flocs in saline water. The average growth rate of frazil particles was found to be 0.174, 0.070, 0.033, and 0.024 mm min−1 and the average floc growth rate was 0.408, 0.118, 0.089, and 0.072 mm min−1 for the 0 ‰, 15 ‰, 25 ‰, and 35 ‰, respectively. Estimates for the porosity of frazil ice flocs were made by equating the estimated volume of ice produced based on thermodynamic conditions to the estimated volume of ice determined from the digital images. The estimated porosities of frazil ice flocs were determined to be 0.86, 0.82, 0.8 and 0.75 for 0 ‰, 15 ‰, 25 ‰ and 35 ‰ saline water, respectively.
-
In recent years, many developing countries have sought to implement more decentralized governmental systems. Despite efforts toward fiscal federalism, assessment of decentralization activity has been hampered by lack of consistent cross-country measures of effectiveness. Since governments play a central role in the management of catastrophic events, disaster impact data provide an opportunity to evaluate whether government structure is important in limiting disaster losses. We use cross-country data over the 1970–2005 period to estimate the relationship between decentralization and disaster casualties; countries with more decentralized governments experience fewer disaster-induced fatalities.
-
Summary Projected climate change effects on streamflow are investigated for the 2041–2070 horizon following the SRES A2 emissions scenario over two snowmelt-dominated catchments in Canada. A 16-member ensemble of SWAT hydrological model (HM) simulations, based on a comprehensive ensemble of the Canadian Regional Climate Model (CRCM) simulations driven by two global climate models (GCMs), with five realizations of the Canadian CGCM3 and three realizations of the German ECHAM5 is established per catchment. This study aims to evaluate, once model bias has been removed by statistical post-processing (SP), how the RCM-simulated climate changes differ from those of the parent GCMs, and how they affect the assessment of climate change-induced hydrological impacts at the catchment scale. The variability of streamflow caused by the use of different SP methods (mean-based versus distribution-based) within each statistical post-processing pathway of climate model outputs (bias correction versus perturbation) is also evaluated, as well as the uncertainty of natural climate variability. The simulations cover 1971–2000 in the reference period and 2041–2070 in the future period. For a set of criteria, results based on raw and statistically post-processed model outputs for the reference climate are compared with observations. This process demonstrates that SP is important not only for GCMs outputs, but also for CRCM outputs. SP leads to a high level of agreement between the CRCM and the driving GCMs in reproducing patterns of observed climate. The ensemble spread of the climate change signal on streamflow is large and varies with catchments and hydrological periods (winter/summer flows). The results of various hydrological indicators show that most of the uncertainty arises from the natural climate variability followed by the statistical post-processing. The uncertainty linked to the choice of statistical pathway is much larger than that associated with the choice of the method in quantifying the hydrological impacts. We find that the incorporation of dynamical downscaling of global models through the CRCM as an intermediate step in the GCM–RCM–SP–HM model chain does not lead to considerable differences in the assessment of the climate change impacts on streamflow for the study catchments.
-
Abstract Groundwater quality modelling plays an important role in water resources management decision making processes. Accordingly, models must be developed to account for the uncertainty inherent in the modelling process, from the sample measurement stage through to the data interpretation stages. Artificial intelligence models, particularly fuzzy inference systems (FIS), have been shown to be effective in groundwater quality evaluation for complex aquifers. In the current study, fuzzy set theory is applied to groundwater-quality related decision-making in an agricultural production context; the Mamdani, Sugeno, and Larsen fuzzy logic-based models (MFL, SFL, and LFL, respectively) are used to develop a series of new, generalized, rule-based fuzzy models for water quality evaluation using widely accepted irrigation indices and hydrological data from the Sarab Plain, Iran. Rather than drawing upon physiochemical groundwater quality parameters, the present research employs widely accepted agricultural indices (e.g., irrigation criteria) when developing the MFL, SFL and LFL groundwater quality models. These newly-developed models, generated significantly more consistent results than the United States Soil Laboratory (USSL) diagram, addressed the inherent uncertainty in threshold data, and were effective in assessing groundwater quality for agricultural uses. The SFL model is recommended as it outperforms both MFL and LFL in terms of accuracy when assessing groundwater quality using irrigation indices.
-
Canada has experienced some of the most rapid warming on Earth over the past few decades with a warming rate about twice that of the global mean temperature since 1948. Long-term warming is observed in Canada’s annual, winter and summer mean temperatures, and in the annual coldest and hottest daytime and nighttime temperatures. The causes of these changes are assessed by comparing observed changes with climate model simulated responses to anthropogenic and natural (solar and volcanic) external forcings. Most of the observed warming of 1.7°C increase in annual mean temperature during 1948–2012 [90% confidence interval (1.1°, 2.2°C)] can only be explained by external forcing on the climate system, with anthropogenic influence being the dominant factor. It is estimated that anthropogenic forcing has contributed 1.0°C (0.6°, 1.5°C) and natural external forcing has contributed 0.2°C (0.1°, 0.3°C) to the observed warming. Up to 0.5°C of the observed warming trend may be associated with low frequency variability of the climate such as that represented by the Pacific decadal oscillation (PDO) and North Atlantic oscillation (NAO). Overall, the influence of both anthropogenic and natural external forcing is clearly evident in Canada-wide mean and extreme temperatures, and can also be detected regionally over much of the country.
-
Abstract This study detected, for the first time, the long term annual and seasonal rainfall trends over Bihar state, India, between 1901 and 2002. The shift change point was identified with the cumulative deviation test (cumulative sum – CUSUM), and linear regression. After the shift change point was detected, the time series was subdivided into two groups: before and after the change point. Arc-Map 10.3 was used to evaluate the spatial distribution of the trends. It was found that annual and monsoon rainfall trends decreased significantly; no significant trends were observed in pre-monsoon, monsoon, post-monsoon and winter rainfall. The average decline in rainfall rate was –2.17 mm·year −1 and –2.13 mm·year −1 for the annual and monsoon periods. The probable change point was 1956. The number of negative extreme events were higher in the later period (1957–2002) than the earlier period (1901–1956).
-
Abstract There is increasing interest in the magnitude of the flow of freshwater to the Arctic Ocean due to its impacts on the biogeophysical and socio‐economic systems in the north and its influence on global climate. This study examines freshwater flow based on a dataset of 72 rivers that either directly or indirectly contribute flow to the Arctic Ocean or reflect the hydrologic regime of areas contributing flow to the Arctic Ocean. Annual streamflow for the 72 rivers is categorized as to the nature and location of the contribution to the Arctic Ocean, and composite series of annual flows are determined for each category for the period 1975 to 2015. A trend analysis is then conducted for the annual discharge series assembled for each category. The results reveal a general increase in freshwater flow to the Arctic Ocean with this increase being more prominent from the Eurasian rivers than from the North American rivers. A comparison with trends obtained from an earlier study ending in 2000 indicates similar trend response from the Eurasian rivers, but dramatic differences from some of the North American rivers. A total annual discharge increase of 8.7 km 3 /y/y is found, with an annual discharge increase of 5.8 km 3 /y/y observed for the rivers directly flowing to the Arctic Ocean. The influence of annual or seasonal climate oscillation indices on annual discharge series is also assessed. Several river categories are found to have significant correlations with the Arctic Oscillation, the North Atlantic Oscillation, or the Pacific Decadal Oscillation. However, no significant association with climate indices is found for the river categories leading to the largest freshwater contribution to the Arctic Ocean.
-
The impact of snow-atmosphere coupling on climate variability and extremes over North America is investigated using modeling experiments with the fifth generation Canadian Regional Climate Model (CRCM5). To this end, two CRCM5 simulations driven by ERA-Interim reanalysis for the 1981–2010 period are performed, where snow cover and depth are prescribed (uncoupled) in one simulation while they evolve interactively (coupled) during model integration in the second one. Results indicate systematic influence of snow cover and snow depth variability on the inter-annual variability of soil and air temperatures during winter and spring seasons. Inter-annual variability of air temperature is larger in the coupled simulation, with snow cover and depth variability accounting for 40–60% of winter temperature variability over the Mid-west, Northern Great Plains and over the Canadian Prairies. The contribution of snow variability reaches even more than 70% during spring and the regions of high snow-temperature coupling extend north of the boreal forests. The dominant process contributing to the snow-atmosphere coupling is the albedo effect in winter, while the hydrological effect controls the coupling in spring. Snow cover/depth variability at different locations is also found to affect extremes. For instance, variability of cold-spell characteristics is sensitive to snow cover/depth variation over the Mid-west and Northern Great Plains, whereas, warm-spell variability is sensitive to snow variation primarily in regions with climatologically extensive snow cover such as northeast Canada and the Rockies. Furthermore, snow-atmosphere interactions appear to have contributed to enhancing the number of cold spell days during the 2002 spring, which is the coldest recorded during the study period, by over 50%, over western North America. Additional results also provide useful information on the importance of the interactions of snow with large-scale mode of variability in modulating temperature extreme characteristics.