Votre recherche
Résultats 846 ressources
-
Résumé: De nombreux articles publiés récemment ont laissé apparaître l’émergence d’un nouveau phénomène dans notre rapport avec la pandémie de COVID-19 : la fatigue pandémique. Ce phénomène suggère l’apparition d’une tendance générale de lassitude face aux mesures sanitaires et à l’état d’urgence devenu permanent. L’objectif de cet article est de replacer cet enjeu dans le contexte de la réalisation d’un projet de recherche portant sur les impacts psychosociaux durant la pandémie. Si relativement peu de recherches se sont intéressées à la fatigue pandémique, la réalité de ce phénomène a été mise en évidence dans le cadre d’un projet de recherche multi-annuelle effectuée durant la pandémie. En termes de méthode, notre équipe multidisciplinaire à l’Université de Sherbrooke a développé un protocole d’enquête permettant d’évaluer les effets de la pandémie de COVID-19 sur la santé mentale à travers des études transversales répétées. La dernière phase de l’enquête inclut un volet additionnel qui cherche à comprendre de quelle manière les conséquences de la pandémie peuvent s’appliquer à d’autres crises systémiques, notamment aux changements climatiques. Différentes vagues d'enquêtes nationales et internationales ont ainsi été réalisées (8 pays, taille minimale de l’échantillon 1000–1500 et échantillonnage par quota mis en oeuvre adapté à chaque pays et basé sur les données démographiques disponibles), et suivant l’évolution de la pandémie, nous avons introduit la notion de fatigue pandémique, ainsi que de fatigue climatique, afin de pouvoir mesurer l’impact de l’exposition prolongée à ces crises mondiales. Ces nouvelles données confirment nos résultats originaux : l’impact psychosocial de la pandémie est immense, en particulier en termes de fatigue pandémique, phénomène qui se retrouve à la fois au niveau comportemental et informationnel. Cette fatigue est un indicateur important à considérer afin d’améliorer notre capacité de réaction et d’adaptation à cette crise, mais également à celles futures.
-
The temperate mixedwood forests of eastern North America have been managed by partial cutting for several decades. To ensure that regeneration contributes to replacing the commercial-size stems that are removed by partial cutting, forest managers need to anticipate how saplings (i.e., regenerating trees with a diameter at breast height >1.0 cm) develop in terms of number and diameter. Using up to 20 years of monitoring data from three study sites, we developed a transition matrix model to predict the future number of saplings and their diameter distribution for mixed yellow birch ( Betula alleghaniensis Britton) – conifer stands. Our results show that partial cutting allowed yellow birch, red maple ( Acer rubrum L.), red spruce ( Picea rubens Sarg.), and balsam fir ( Abies balsamea (L.) Mill.) saplings to reach merchantable size faster and in greater numbers than in untreated control plots. We also found that fewer hardwood saplings (yellow birch and red maple) than softwood saplings (red spruce and balsam fir) were required to produce 1 m 2 ·ha −1 of merchantable basal area after 20–40 years. Finally, our model provides a tool for forest managers to predict sapling development in mixed hardwood and softwood stands over a full cutting cycle.
-
Abstract In northern hardwood forests, tree markers select the trees to be harvested during logging operations using classification systems that assign harvest priorities based on the presence of a wide range of individual defects. According to the most recent advances in our understanding of the impact of defects on both tree vigour (the risk of mortality or decline in growth) and quality (the potential for recovering valuable sawlogs), tree markers should adopt a simpler classification system that considers fewer defects than the current operational practice, and they should prioritize the removal of trees with crown dieback. Since the probability of developing defects and dying increases substantially with tree diameter, tree markers should also favour the removal of larger trees that have maintained their quality. However, these recommendations were developed based on tree-level analyses. To provide further validation at the stand scale, we compared stand improvement and value recovery under three tree marking regimes: a new, simplified regime based on the recommendations above, and two regimes used in the province of Quebec, Canada. To do so, we conducted tree marking simulations and value recovery assessments in 14 managed stands distributed across the northern hardwood range of Quebec. Our results confirmed that the simplified tree marking regime not only facilitated stand improvement by removing a greater proportion of low-vigour trees, but also recovered significantly more value (17% on average) at the stand scale. By prioritizing the removal of trees with crown dieback, the simplified regime was superior at salvaging the current value of low-vigour trees before they die or decline in quality. Based on our results, we propose simplified and empirically-validated tree marking guidelines for northern hardwood forests.
-
Northern hardwoods are susceptible to a wide range of defects that can reduce the amount of sound wood with desirable qualities, such as the clear sapwood of sugar maple trees. Yet, the rate at which trees decline in quality due to the development of such defects has never been quantified in northern hardwood forests due to a dearth of repeat inventories that record the appearance of defects over time. As a result, it remains uncertain whether, and how, selection management reduces the probability of decline in quality. In this study, we quantify the rate at which trees decline in quality due to the development of defects, and we test several hypotheses regarding the influence of selection management on quality. Our results show that (1) the probability of decline in quality increases as trees grow larger; (2) crown dieback also increases the probability of decline in quality; (3) the probability of decline in quality is slightly lower in managed stands than in unmanaged stands, and (4) the probability of decline in quality increases with the mean annual temperature of the site. Finally, we combined our estimates of the probability of decline in quality with previous estimates of the probability of mortality to assess the overall risk associated with retaining trees of different species, sizes, and vigour profiles. The resulting metric can inform efforts to improve the management of northern hardwood forests by providing an integrated estimate of the risk that the value of a tree will be reduced, or eliminated, due to mortality or decline in quality.
-
Performing a complete silvicultural diagnosis before a silvicultural treatment generally requires assessing the state of regeneration with the help of an inventory by sampling, particularly for stands dominated by sugar maple (Acer saccharum Marsh.) or yellow birch (Betula alleghaniensis Britt.), in which partial cuts are recommended. This inventory may then be compared to the standard or used in a growth model for saplings (trees for which the diameter measured at 1.3 m above the ground (DBH) varies from 1.1 cm to 9.0 cm). Some of these tools are based on sapling density, while others are based on the stocking of the saplings or on the stocking of total regeneration (combining saplings and seedlings with a DBH ≤ 1.0 cm). We assessed the number of plots required to estimate the density and the stocking of saplings with a given margin of error in 28 stands. The results show that more plots are required than usual in practice to inventory sapling density. The stocking is much easier to estimate precisely.
-
Multi-cohort forest management in northern hardwood stands may well be the best way to successfully regenerate tree species of intermediate shade tolerance, such as yellow birch (Betula alleghaniensis Britt.). The creation of large enough gaps in the canopy favors increased light availability within the opening, while soil scarification provides suitable germination seedbeds. Evidence of these methods’ success nonetheless remains mostly the purview of experimental studies rather than operational tests. In Quebec, Canada, the multi-cohort methods promoted include group selection cutting and patch cutting. The present study tested their implementation at an operational scale and over a large territory in both hardwood-dominated and mixedwood stands. We assessed their efficacy in promoting natural regeneration of commercial hardwood trees, notably yellow birch and sugar maple (Acer saccharum Marsh.). We conducted regeneration surveys at 2, 5, 10, and 15 years after harvest. Overall, group selection and patch cuttings were successful in regenerating the target species. Yellow birch, for instance, showed a mean stocking around 60% and a mean sapling density around 3400 stems ha−1 after 15 years. We compared several variables for measuring regeneration in early years, and found that the relative abundance, the stocking based on one stem per sampling unit, and the mean maximum height were good predictors of the relative presence of yellow birch and sugar maple in 15-year-old canopy openings. Using smaller sampling units (6.25 m2 rather than 25 m2) and waiting until year 5 may be more useful for making such predictions. In addition, there was an important turnover in vertical dominance in these openings. Non-commercial woody competitors were frequently dominant in early years but were often replaced by commercial hardwoods, notably yellow birch. We propose certain thresholds for assessing the success of post-harvest regeneration and for evaluating the need for a cleaning treatment.
-
Abstract The management of sugar maple (Acer saccharum) at the northern edge of its range is mainly oriented toward timber production, from trees of higher grades. However, both the quality of mature trees in natural stands and how the quality may vary depending on the silvicultural treatment are unknown, especially under northern conditions. The objective of this study was to describe the variation in stem quality of mature maple trees (diameter >33 cm) according to climatic, geographic or soil variables, and to evaluate the effects of a first selection cutting cycle on this quality. Annual temperature (1.7–4.1° C) was the most important variable explaining differences in the proportion of higher-grade trees, with a 16 percent gain associated with every additional increase in degrees Celsius. The practice of a first selection cutting was associated with an 11 percent gain in this proportion. Although the actual proportion of high-quality trees was below 35 percent on the coolest sites, a proper tree selection through silviculture could likely improve this proportion in future decades, whereas the potential effects of climate change are unclear.
-
Abstract. Spaceborne microwave remote sensing (300 MHz–100 GHz) provides a valuable method for characterizing environmental changes, especially in Arctic–boreal regions (ABRs) where ground observations are generally spatially and temporally scarce. Although direct measurements of carbon fluxes are not feasible, spaceborne microwave radiometers and radar can monitor various important surface and near-surface variables that affect terrestrial carbon cycle processes such as respiratory carbon dioxide (CO2) fluxes; photosynthetic CO2 uptake; and processes related to net methane (CH4) exchange including CH4 production, transport and consumption. Examples of such controls include soil moisture and temperature, surface freeze–thaw cycles, vegetation water storage, snowpack properties and land cover. Microwave remote sensing also provides a means for independent aboveground biomass estimates that can be used to estimate aboveground carbon stocks. The microwave data record spans multiple decades going back to the 1970s with frequent (daily to weekly) global coverage independent of atmospheric conditions and solar illumination. Collectively, these advantages hold substantial untapped potential to monitor and better understand carbon cycle processes across ABRs. Given rapid climate warming across ABRs and the associated carbon cycle feedbacks to the global climate system, this review argues for the importance of rapid integration of microwave information into ABR terrestrial carbon cycle science.
-
Snow is the dominant form of precipitation and the main cryospheric feature of the High Arctic (HA) covering its land, sea, lake and river ice surfaces for a large part of the year. The snow cover in the HA is involved in climate feedbacks that influence the global climate system, and greatly impacts the hydrology and the ecosystems of the coldest biomes of the Northern Hemisphere. The ongoing global warming trend and its polar amplification is threatening the long-term stability of the snow cover in the HA. This study presents an extensive review of the literature on observed and projected snow cover conditions in the High Arctic region. Several key snow cover metrics were reviewed, including snowfall, snow cover duration (SCD), snow cover extent (SCE), snow depth (SD), and snow water equivalent (SWE) since 1930 based on in situ, remote sensing and simulations results. Changes in snow metrics were reviewed and outlined from the continental to the local scale. The reviewed snow metrics displayed different sensitivities to past and projected changes in precipitation and air temperature. Despite the overall increase in snowfall, both observed from historical data and projected into the future, some snow cover metrics displayed consistent decreasing trends, with SCE and SCD showing the most widespread and steady decreases over the last century in the HA, particularly in the spring and summer seasons. However, snow depth and, in some regions SWE, have mostly increased; nevertheless, both SD and SWE are projected to decrease by 2030. By the end of the century, the extent of Arctic spring snow cover will be considerably less than today (10–35%). Model simulations project higher winter snowfall, higher or lower maximum snow depth depending on regions, and a shortened snow season by the end of the century. The spatial pattern of snow metrics trends for both historical and projected climates exhibit noticeable asymmetry among the different HA sectors, with the largest observed and anticipated changes occurring over the Canadian HA.
-
Abstract Having a realistic estimation of snow cover by conceptual hydrological models continues to challenge hydrologists. The calibration of the free model parameters is an unavoidable step and the uncertainties resulting from the use of this optimal set remains a source of concern, especially in forecasting applications and climate changes impact assessments. This study seeks to improve the calibration of the conceptual hydrological model GR4J coupled with the Cemaneige snow model, in order to obtain a more realistic simulation of the snow water equivalent (SWE) and to reduce the uncertainty of the free parameters. The performance of the two models was tested over twelve snow-dominated basins in southern Quebec, Canada. Four calibration strategies were adopted and compared. In the first two strategies, the parameters were calibrated against observed streamflow alone using a local and a global algorithm. In the third and fourth strategies the calibration of snow and hydrological parameters was performed against observed streamflow and snow water equivalent (SWE) measured at snow course transects, first separately, and then with a multiobjective approach. An ensemble of equifinal parameters was used to compare the capacity of the global and multiobjective algorithms to improve the parameters identifiability and to assess the impact of parameter equifinality on the temperature sensitivity of spring peak streamflow. The large number of equifinal parameters found during calibration underscores the importance of structural non-identifiability of the coupled GR4J-Cemaneige model. The inclusion of snow observations within a multiobjective calibration improved the simulation of SWE, the identifiability of the parameters and their correlation with basins characteristics. Parameter equifinality caused a small but non negligible uncertainty in the simulated response of spring peak flow to warming temperatures. Parameter equifinality should be considered in climate impact studies in snow-dominated basins where poorly constrained snow parameters can affect the temperature sensitivity of streamflow.
-
Abstract. In the semiarid Andes of Chile, farmers and industry in the cordillera lowlands depend on water from snowmelt, as annual rainfall is insufficient to meet their needs. Despite the importance of snow cover for water resources in this region, understanding of snow depth distribution and snow mass balance is limited. Whilst the effect of wind on snow cover pattern distribution has been assessed, the relative importance of melt versus sublimation has only been studied at the point scale over one catchment. Analyzing relative ablation rates and evaluating uncertainties are critical for understanding snow depth sensitivity to variations in climate and simulating the evolution of the snowpack over a larger area and over time. Using a distributed snowpack model (SnowModel), this study aims to simulate melt and sublimation rates over the instrumented watershed of La Laguna (513 km2, 3150–5630 m a.s.l., 30∘ S, 70∘ W), during two hydrologically contrasting years (i.e., dry vs. wet). The model is calibrated and forced with meteorological data from nine Automatic Weather Stations (AWSs) located in the watershed and atmospheric simulation outputs from the Weather Research and Forecasting (WRF) model. Results of simulations indicate first a large uncertainty in sublimation-to-melt ratios depending on the forcing as the WRF data have a cold bias and overestimate precipitation in this region. These input differences cause a doubling of the sublimation-to-melt ratio using WRF forcing inputs compared to AWS. Therefore, the use of WRF model output in such environments must be carefully adjusted so as to reduce errors caused by inherent bias in the model data. For both input datasets, the simulations indicate a similar sublimation fraction for both study years, but ratios of sublimation to melt vary with elevation as melt rates decrease with elevation due to decreasing temperatures. Finally results indicate that snow persistence during the spring period decreases the ratio of sublimation due to higher melt rates.
-
TanDEM-X digital elevation model (DEM) is a global DEM released by the German Aerospace Center (DLR) at outstanding resolution of 12 m. However, the procedure for its creation involves the combination of several DEMs from acquisitions spread between 2011 and 2014, which casts doubt on its value for precise glaciological change detection studies. In this work we present TanDEM-X DEM as a high-quality product ready for use in glaciological studies. We compare it to Aerial Laser Scanning (ALS)-based dataset from April 2013 (1 m), used as the ground-truth reference, and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) V003 DEM and SRTM v3 DEM (both 30 m), serving as representations of past glacier states. We use a method of sub-pixel coregistration of DEMs by Nuth and Kääb (2011) to determine the geometric accuracy of the products. In addition, we propose a slope-aspect heatmap-based workflow to remove the errors resulting from radar shadowing over steep terrain. Elevation difference maps obtained by subtraction of DEMs are analyzed to obtain accuracy assessments and glacier mass balance reconstructions. The vertical accuracy (± standard deviation) of TanDEM-X DEM over non-glacierized area is very good at 0.02 ± 3.48 m. Nevertheless, steep areas introduce large errors and their filtering is required for reliable results. The 30 m version of TanDEM-X DEM performs worse than the finer product, but its accuracy, −0.08 ± 7.57 m, is better than that of SRTM and ASTER. The ASTER DEM contains errors, possibly resulting from imperfect DEM creation from stereopairs over uniform ice surface. Universidad Glacier has been losing mass at a rate of −0.44 ± 0.08 m of water equivalent per year between 2000 and 2013. This value is in general agreement with previously reported mass balance estimated with the glaciological method for 2012–2014.
-
Abstract. Black carbon aerosol (BC), which is emitted from natural and anthropogenic sources (e.g., wildfires, coal burning), can contribute to magnify climate warming at high latitudes by darkening snow- and ice-covered surfaces, and subsequently lowering their albedo. Therefore, modeling the atmospheric transport and deposition of BC to the Arctic is important, and historical archives of BC accumulation in polar ice can help to validate such modeling efforts. Here we present a > 250-year ice-core record of refractory BC (rBC) deposition on Devon ice cap, Canada, spanning the years from 1735 to 1992. This is the first such record ever developed from the Canadian Arctic. The estimated mean deposition flux of rBC on Devon ice cap for 1963–1990 is 0.2 mg m−2 a−1, which is at the low end of estimates from Greenland ice cores obtained using the same analytical method ( ∼ 0.1–4 mg m−2 a−1). The Devon ice cap rBC record also differs from the Greenland records in that it shows only a modest increase in rBC deposition during the 20th century. In the Greenland records a pronounced rise in rBC is observed from the 1880s to the 1910s, which is largely attributed to midlatitude coal burning emissions. The deposition of contaminants such as sulfate and lead increased on Devon ice cap in the 20th century but no concomitant rise in rBC is recorded in the ice. Part of the difference with Greenland could be due to local factors such as melt–freeze cycles on Devon ice cap that may limit the detection sensitivity of rBC analyses in melt-impacted core samples, and wind scouring of winter snow at the coring site. Air back-trajectory analyses also suggest that Devon ice cap receives BC from more distant North American and Eurasian sources than Greenland, and aerosol mixing and removal during long-range transport over the Arctic Ocean likely masks some of the specific BC source–receptor relationships. Findings from this study suggest that there could be a large variability in BC aerosol deposition across the Arctic region arising from different transport patterns. This variability needs to be accounted for when estimating the large-scale albedo lowering effect of BC deposition on Arctic snow/ice.