Votre recherche
Résultats 554 ressources
-
Floods are natural hazards that have the greatest socioeconomic impact worldwide, given that 23% of the global population live in urban areas at risk of flooding. In this field of research, the analysis of flood risk has traditionally been studied based mainly on approaches specific to civil engineering such as hydraulics and hydrology. However, these patterns of approaching the problem in research seem to be changing in recent years. During the last few years, a growing trend has been observed towards the use of methodology-based approaches oriented towards urban planning and land use management. In this context, this study analyzes the evolution of these research patterns in the field by developing a bibliometric meta-analysis of 2694 scientific publications on this topic published in recent decades. Evaluating keyword co-occurrence using VOSviewer software version 1.6.20, we analyzed how phenomena such as climate change have modified the way of addressing the study of this problem, giving growing weight to the use of integrated approaches improving territorial planning or implementing adaptive strategies, as opposed to the more traditional vision of previous decades, which only focused on the construction of hydraulic infrastructures for flood control.
-
ABSTRACT Waterlogging is a critical abiotic stress factor severely affecting maize, one of the World's most widely cultivated cereal crops. Globally, maize is a crucial food crop, grown in diverse agro‐climatic zones, from subtropical to temperate climates. Waterlogging, resulting from flooding, intense rainfall and inefficient drainage systems, continues to be a major abiotic stress factor influencing crop productivity globally. Prolonged exposure to excess soil moisture leads to oxygen depletion in the root zone, resulting in restricted aerobic respiration, impaired nutrient uptake and disruption of physiological processes. This review aims to provide a comprehensive overview of the morphological, physiological and biochemical changes maize undergoes in response to waterlogging stress. Key aspects such as root system adaptation, reduction in photosynthetic efficiency, accumulation of reactive oxygen species (ROS) and hormonal imbalances are systematically examined. Furthermore, we delve into the metabolic shifts that enable maize to survive under anaerobic conditions, including alterations in energy metabolism, carbohydrate partitioning, and activating antioxidant defence mechanisms. The role of key signalling molecules such as ethylene is explored, highlighting their involvement in regulating stress responses. Additionally, the review discusses agronomic and genetic approaches for improving waterlogging tolerance in maize, including the development of stress‐resilient cultivars through breeding and biotechnological interventions. By synthesising recent advances in understanding maize's response to waterlogging, this paper identifies gaps and proposes future research directions, focusing on the integration of molecular and field‐based strategies. The insights from this review are crucial for developing sustainable agricultural practices aimed at mitigating the adverse impacts of waterlogging on maize productivity, particularly in flood‐prone areas. Breeding for waterlogging resilience integrates the creation of robust varieties, plant morphology optimisation, and utilisation of tolerant secondary traits through combined conventional and biotechnological breeding strategies.
-
Urbanization and climate change keep intensifying extreme rainfall events. Previous studies have explored urban flood susceptibility, yet a comprehensive approach that unifies these perspectives has remained underdeveloped. This study established a holistic framework using the SD-PLUS-LightGBM model with multiple variables under three SSP-RCP scenarios to predict spatial-temporal dynamics of flood susceptibility in the Greater Bay Area between 2030 and 2050. Compared with traditional models, LightGBM established superior predictive accuracy and operational reliability for urban flood susceptibility mapping. The results indicated a non-linear expansion of high-susceptibility zones, with SSP5–8.5 projections showing a two-fold increase in vulnerable areas by 2050 relative to 2020 baselines. Regions experiencing pronounced susceptibility transitions were expected to grow significantly (0.23 % of the total area), concentrated in historic urban cores and peri‑urban interfaces. This study offered an in-depth approach to stormwater management along with targeted recommendations for sustainable urban planning and design. © 2025
-
Spring floods occurring in the Midwest US are often aggravated by meteorological and hydrological conditions. In this study, the seasonal influences of precipitation (PRCP) and river stage (RS) on groundwater level (GWL) fluctuations were analyzed for the Middle and Lower Platte watersheds along the Platte River in a Midwestern catchment that is vulnerable to spring floods. Statistical analysis was conducted to simulate GWL with a moving average-based time lag consideration approach by using multiple hydrological data sets for 25 study sites. The results showed that the time lag consideration approach appropriately provided the regional information of water infiltration characteristics among GWL, PRCP, and RS for each study site. Also, the correlations of GWL with PRCP and RS were found to vary depending on the season. Especially in the early spring season, the correlation of GWL with PRCP is very weak (correlation coefficient=0.001 to 0.198). This may be due to entirely or partially frozen ground, which prevents rainwater from penetrating into the aquifer, causing large amounts of runoff and contributing to frequent flooding in early spring. In addition, statistical analysis showed that accounting for the time lag of PRCP and RS improved GWL simulation performance, and their influence varied by season. © 2025 American Society of Civil Engineers.
-
During and after a disaster, selected services and systems are needed to recover and maintain important functions of society. These are deemed critical infrastructure (CI). When these services are disrupted due to the impacts of a disaster, response and recovery may be slowed or halted. As flooding events are occurring more often across larger geographic extents, advancing methods for assessing risks of flooding to CI is vital. We use Utah, USA as a case study to demonstrate a novel, transferable approach for assessing fine-scale flood risks to CI across large geographic areas. Specifically, our assessment approach integrates high-resolution building footprints of schools, first responder facilities, and hospitals, and flood risk maps from a state-of-the-art big data flood model and the U.S. Federal Emergency Management Agency (FEMA). We show that 94 CI facilities across Utah are at risk of severe flooding, and that those risks to CI are almost entirely overlooked by FEMA flood risk maps. Though nearly every CI building is located outside of FEMA flood zones, FEMA maps inaccurately and incompletely represent flood risks, indicating that future flood risk assessment approaches should use flood risk maps from other sources. The approach we introduce can be used to assess flood risks to CI elsewhere, and case study results can be applied to inform flood risk reduction efforts in Utah. © 2025 Elsevier Ltd
-
This study evaluates the impacts of projected sea level rise (SLR) on coastal flooding across major Indian cities: Mumbai, Kolkata, Chennai, Visakhapatnam, Surat, Kochi, Thiruvananthapuram, and Mangaluru. Machine learning models, including Long Short-Term Memory (LSTM), Random Forest (RF), and Gradient Boosting (GB), has been employed to assess flood risks under four Shared Socioeconomic Pathways (SSP 126, 245, 370, and 585) emission scenarios. The research utilized these models because they demonstrate high performance in handling difficult data relationships and both temporal patterns and sophisticated environmental data. SLR projections provided by computers generate forecasts that combine with digital elevation models (DEMs) to determine coastal flooding risks and locate flood-prone areas. Results reveal that Mumbai and Kolkata face the highest flood risks, particularly under high emission scenarios, while Kochi and Mangaluru exhibit moderate exposure. Model performance is validated using residual analysis and Receiver Operating Characteristic (ROC) curves, confirming reliable predictive accuracy. These findings provide essential information for urban planners and policymakers to prioritize climate adaptation strategies in vulnerable coastal cities. © The Author(s) 2025.
-
Milpa Alta, located southeast of Mexico City, is a key region for environmental sustainability due to its volcanic soil, biodiversity, and critical role in aquifer recharge, which supports the city's water supply. However, rapid urbanization has severely impacted the area, causing reduced vegetation cover, increased runoff, and diminished groundwater recharge, which intensify flooding, soil erosion, and water scarcity. This study aims to identify optimal sites for managed aquifer recharge (MAR) structures in Milpa Alta through a multi-criteria analysis incorporating criteria such as topography, land use, proximity to urban areas, and drainage networks. Uniquely, hydraulic simulations of flood scenarios were integrated into the analysis to improve the precision of site selection. Geographic information systems (GIS) were used to assess and combine these criteria, providing a spatial evaluation of suitability. Results indicate that the central and northern regions of Milpa Alta, particularly around San Francisco Tecoxpa and San Antonio Tecómitl, are most suitable for MAR implementation due to their permeable soils, gentle slopes, and proximity to agricultural lands and drainage networks. These MAR structures can enhance groundwater recharge and mitigate flood risks during extreme rainfall events, with the potential to capture up to 300,000 m3 of surface runoff during a single high-intensity storm event. Despite its strengths, the study acknowledges limitations such as the absence of detailed water quality analyses and the need for sensitivity testing of the criteria weighting. This research provides an innovative approach to MAR site selection by integrating flood simulations, offering a replicable model for similar regions. Successful implementation of MAR in Milpa Alta requires addressing water quality concerns, engaging stakeholders, and ensuring compliance with regulatory frameworks. The findings emphasize MAR's potential to balance urbanization pressures with sustainable water management and flood mitigation strategies in Mexico City's rapidly developing areas. © 2025 Wiley Periodicals LLC.
-
Urban flooding, exacerbated by climate change and unregulated urbanization, poses significant risks to the built environment. In addition to physical damage, floodwaters often mobilize a hazardous mix of untreated sewage, industrial effluents, and undesirable pollutants, leading to severe microbial contamination in the floodwaters. This study introduces “HyEco”-an integrated framework comprising high-fidelity 3-way coupled hydrodynamic and ecological modelling with an aim to capture the “unhidden tangible flood risks” and “hidden intangible public-health risks” in tandem. Focusing on Delhi, India, a densely populated metropolis prone to recurrent urban flooding and associated health crises, the framework simulates the 2023 mega-flood event. Results show that approximately 63.5 % of the region is categorized under ‘high’ to ‘very high’ flood risk zones, with over 20 % of these areas housing around 15 % of the city's dense population. The hydrodynamic model outputs were forced into the ecological model to simulate the fate and transport of microbial contamination in floodwaters. Escherichia coli concentrations ranged from 772,868 to 790,000 MPN/100 mL, far exceeding established safety thresholds. A Quantitative Microbial Risk Assessment (QMRA) reveals elevated infection probabilities, particularly among children, with risks up to 2.60×10⁻³ under repeated exposure and 8.38×10⁻⁴ to 8.57×10⁻⁴ for pedestrian splash exposures. Unlike prior approaches that examine flood and microbial risks in isolation or depend on static datasets, HyEco overcomes key methodological gaps by dynamically integrating flood and microbial processes at high spatio-temporal resolution. The HyEco framework offers a scalable and actionable tool for integrated flood risk management and climate-resilient public health planning. © 2025
-
Urban underground flooding occurs frequently worldwide in the context of climate change and rapid urbanization, posing a serious threat to the travel safety of urban populations; in particular, staircases play an important role in the emergency evacuation of pedestrians in floodwater. Previous studies have identified the staircase configuration as a crucial factor influencing the evacuation difficulty of pedestrians in floodwater. However, the correlation between the geometric characteristics of staircase structures and pedestrian vulnerability is not fully understood, and few parametric studies have focused on the effects of wind intrusion into underground spaces and the effects of various engineering measures. This study thereby aims to assess pedestrian vulnerability in underground staircase floodwater as the width of the lower segment of the staircase increases, the effect of wind in the staircase is incorporated, and several flood prevention and/or windproof measures are implemented. Computational fluid dynamics (CFD) simulations were performed to reproduce the mean floodwater flow field and wind flow field on underground staircases. The findings show that (i) a variation in the width of the lower staircase after the rest platform affects pedestrian vulnerability, i.e., an increasing lower staircase width decreases the pedestrian risk to a certain degree; however, the jet behind the rest platform intensifies it; (ii) the incorporation of the wind effect when it intrudes the staircase obviously deteriorates the pedestrian vulnerability, and a discrepancy exists in the evacuation speeds of different pedestrian groups under a joint effect of wind and floodwater; and (iii) some engineering measures, especially windproof measures, have the potential to mitigate pedestrian vulnerability. These findings can serve as a reference for policymakers and stakeholders in coping with urban underground flooding hazards and guiding the emergency evacuation of people trapped in floodwater in the context of resilient city construction. © 2025 Elsevier Ltd
-
An accurate study of extreme precipitation risk events is crucial for flood control, urban planning, and engineering design. The Copula function effectively handles uncertainties and nonlinear interactions among multiple hydrological variables, capturing complex correlations in extreme precipitation events for more precise risk assessments. Selecting the parameters of the Copula function is critical, as it defines the function’s shape and the dependence structure between variables, influencing its application. Traditional parameterization methods, like maximum likelihood estimation and least squares, often require large datasets and distribution assumptions, making them cumbersome for high-dimensional data. This research presents a model using an enhanced whale optimization algorithm to estimate Copula parameters (CLCWOA-Copula), aiming to assess return period (RP) and failure probability associated with extreme precipitation risk events. Monthly precipitation data from Zhengzhou, China, from 1950 to 2024 is analyzed, using the 90th percentile as the extreme precipitation threshold. Marginal distributions are fitted using the P-III and gamma distributions, etc., which are then combined using CLCWOA-Copula to analyze coincident RP, joint RP, Kendall RP, and failure probability under composite conditions. The results demonstrate that this optimization method possesses strong global search capabilities and parallel computing abilities, yielding optimal Copula parameter values within few iterations and selecting the best-fit Copula function based on AIC, R², and RMSE. The Kendall RP and failure probability offer more accurate tools for extreme precipitation risk analysis; when Pmax reaches 540 mm, P90 reaches 1080 mm, or R90 reaches 0.83, a one-in-a-century extreme precipitation event is indicated. This study provides important insights for risk metrics applicable to extreme weather. © The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2025.
-
Extreme weather events, such as heat waves, heavy rainfall and droughts, have become more frequent and intense in Brazil. According to climate change scenarios, this trend, which has a negative impact on people’s health and living conditions, will continue. Here, we analysed indicators for extreme weather events resulting from climate change, projected for the 21st century, alongside socio-demographic indicators for Brazilian municipalities, in an attempt to identify populations exposed to the risks of the climate crisis. We calculated the values of indicators for extreme air temperature and precipitation events, based on NEX-GDDP-CMIP6 data, for a reference period and for the future, as well as socio-demographic indicators based on recent census data. Using Spearman’s coefficient, we then calculated anomaly indicators for the future time intervals and analysed correlations with the socio-demographic indicators. Our results indicate a reduction in cold days and an increase in hot days and heat waves in both scenarios (SSP2-4.5 and SSP5-8.5), with the most changes occurring in the highest emission scenario. The extreme precipitation indicators suggest both an increase and a reduction in intense precipitation and droughts in a number of the country’s regions. The projected changes are more intense in the highest emission scenario, and in the North and Northeast regions. We noted a trend for greatest occurrence of extreme events in locations with a higher proportion of Black, Parda/Brown, Indigenous and Quilombola populations, and the socially vulnerable. We recommend that policies to adapt and mitigate the impacts of climate change focus on reducing inequalities and promoting climate justice. © The Author(s) 2025.
-
In recent years,rapid urbanization and global warming have led to frequent and severe rainstorm and flood disasters in the Sichuan-Chongqing region. This change will not only have a serious impact on the ecological environment and socio-economic development of the area,but also significantly increase the pressure on urban infrastructure and threaten the safety of people's lives and property. Therefore,it is particularly important to scientifically and accurately analyze the disaster risk of rainstorm and flood in Sichuan-Chongqing region in the past and future. This paper utilized daily precipitation data from 50 selected meteorological stations in the Sichuan-Chongqing region,precipitation data from 5 CMIP6 models,gridded population and economic data under Shared Socioeconomic Pathways(SSPs),as well as DEM and land use remote sensing data. Firstly,using Taylor diagrams,quantitative indices(S),and standardized anomaly sequences,the study evaluated the simulation performance of 5 individual CMIP6 models,an equal-weighted aggregation of 5 models(EWA-5),and unequally-weighted aggregations of 5 models(UEWA-5)for five selected extreme precipitation indices. Then,by building a comprehensive risk assessment model of rainstorm and flood disaster based on disaster risk and vulnerability of disaster bearing body,the study conducted risk assessments,future projections,and comparative analyses of rainstorm and flood disasters during baseline(1995-2014)and future near-term(2025-2044)and long-term (2045-2064)periods under three different climate change scenarios(SSP1-2. 6,SSP2-4. 5,SSP5-8. 5). Results indicated:(1)The EC-Earth3 model performed best in simulating the five extreme precipitation indices,with correlation coefficients between simulated and observed values of 0. 78 for R95p,0. 90 for RX1day,and 0. 77 for RX5day. Overall,the simulation performance of UEWA-5 exceeded that of EWA-5.(2)During the baseline period,central Sichuan exhibited high values for the five extreme precipitation indices,followed by eastern Sichuan and Chongqing,while western Sichuan showed lower values. The year 1998 recorded peak values for all five indices,with a maximum single-day precipitation of 86 mm for RX1day and an intensity(SDII)value of 11. 3 mm·d-1.(3)In future periods,the five extreme precipitation indices display a spatial distribution characterized by higher values in central regions and lower values around the periphery. Higher levels of social vulnerability and radiative forcing correlate with larger values of extreme precipitation indices. Comparing the two future periods,values of the indices are larger in the long term,notably with R95p averaging 846. 8 mm,an increase of 169. 2 mm compared to the near term.(4)During historical periods,areas with higher comprehensive risk of rainstorm and flood disasters were concentrated in central Sichuan and downtown Chongqing. In the two future periods,the high and moderately high-risk areas in central Sichuan are expected to expand,while the moderate-risk areas will shrink. The range of low-risk areas in the western Sichuan Plateau will also decrease,and the risk levels in southern Sichuan and eastern Sichuan-Chongqing border areas will respectively decrease to moderate-low and low-risk zones. Comparing the two future periods,the range of moderately high and moderate-risk areas in central Sichuan is expected to expand,while southwestern Chongqing will transition to a moderate-risk area in the long term. Other regions will generally maintain their original risk levels. Changes in disaster risk levels in the Sichuan-Chongqing region are less pronounced with increasing social vulnerability and radiative forcing,especially in the western Sichuan Plateau and northeastern Sichuan,where changes in disaster risk levels are minimal. The study results can provide important references for reducing disaster risks,enhancing emergency response capabilities,and making scientifically informed decisions for disaster prevention in the Sichuan-Chongqing region. © Editorial Department of Plateau Meteorology.
-
Purpose of the Review: Climate change is intensifying the pressures on aquatic ecosystems by altering the dynamics of contaminants, with cascading effects on ecological and human health. This review synthesizes recent evidence on how rising temperatures, altered precipitation patterns, and extreme weather events influence chemical and microbial contaminant dynamics in aquatic environments. Recent Findings: Key findings reveal that elevated temperatures enhance phosphorus pollution and algal blooms, increase heavy metal release from sediments, and promote the mobilization of organic pollutants. Concurrently, climate change exacerbates microbial contamination by facilitating the spread of waterborne microbial contaminants, especially posing more pressure to antimicrobial resistance-related contaminants through temperature-driven horizontal gene transfer and extreme precipitation events. Complex interactions between chemical and microbial contaminants like heavy metals co-selecting for antibiotic resistance further amplify risks. The compounded effects of climate change and contaminants threaten water quality, ecosystem resilience, and public health, particularly through increased toxicant exposure via seafood and waterborne disease outbreaks. Despite growing recognition of these interactions, critical gaps remain in understanding their synergistic mechanisms, especially in data-scarce regions. Summary: This review highlights the urgent need for integrated monitoring, predictive modeling, and adaptive policies under a One Health framework to mitigate the multifaceted impacts of climate-driven contamination. Future research should prioritize real-world assessments of temperature effects, urban overflow dynamics during extreme weather, and the socio-behavioral dimensions of contaminant spread to inform effective mitigation strategies. © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025.
-
Les événements météorologiques extrêmes (EME) et les désastres qu’ils entrainent provoquent des conséquences psychosociales qui sont modulées en fonction de différents facteurs sociaux. On constate aussi que les récits médiatiques et culturels qui circulent au sujet des EME ne sont pas représentatifs de l’ensemble des expériences de personnes sinistrées : celles qui en subissent les conséquences les plus sévères tendent aussi à être celles qu’on « entend » le moins dans l’espace public. Ces personnes sont ainsi susceptibles de vivre de l’injustice épistémique, ce qui a des effets délétères sur le soutien qu’elles reçoivent. Face à ces constats s’impose la nécessité de mieux comprendre la diversité des expériences d’EME et d’explorer des stratégies pour soutenir l’ensemble des personnes sinistrées dans leur rétablissement psychosocial. Cet article soutient que la recherche narrative peut contribuer à répondre à ces objectifs. En dépeignant des réalités multiples, la recherche narrative centrée sur les récits de personnes sinistrées présente aussi un intérêt significatif pour l’amélioration des pratiques d’intervention en contexte de désastre. , Extreme weather events (EWE) and their resulting disasters cause psychosocial consequences that are moderated by different social factors. Media and cultural accounts of EWEs do not represent the full range of disaster survivor experiences, that is, those who experienced the most severe consequences also tend to be those least “heard” in the public arena. These people are therefore most likely to experience forms of epistemic injustice that negatively impact the support offered to cope with disaster. Considering these findings, there is a need to better understand the diversity of EWE experiences and explore strategies for supporting all disaster survivors in their psychosocial recovery. This article argues that narrative research can help meet these needs. By portraying the multiple realities of people affected by EWEs, narrative research focusing on the stories of disaster survivors is also of significant interest for improving intervention practices in this context.
-
Abstract Extreme precipitation is often challenging to predict but has substantial societal impacts, especially when it is persistent and affects a large region. We analyze Rossby wave packets, jet streams, atmospheric blocking, Madden–Julian oscillation (MJO), and El Niño–Southern Oscillation (ENSO) and elucidate the associated large-scale physical mechanisms contributing to the occurrence and persistence of extreme precipitation regimes (EPRs) in eastern North America as identified in an earlier study. The large temporal and spatial scales of EPRs, as well as the climatological study of EPRs, distinguish this study from previous precipitation studies, which are mostly on shorter-duration events. EPRs are characterized by an unusually slow-moving and persistent large-scale synoptic-scale circulation structure favorable for the southerly flow of subtropical moisture into eastern North America. The strength of the southerly flow is critical in producing large precipitation rates. The favorable synoptic structure is established by the start of the EPR, moves very slowly eastward until the middle of the EPR, and then travels faster eastward by the end of the EPR. The persistence of midlatitude ridges and the long-wavelength and slow-moving nature of the synoptic structure are critical to the longevity of EPRs. The latent heat release associated with moisture transport and ascent in cyclones provides a feedback mechanism contributing to the persistence. MJO phase 3 is favored before the EPR start, while phases 4 and 5 are favored during the EPR. During EPRs, there is no significant preference for El Niño or La Niña conditions, but a negative Pacific decadal oscillation (PDO) is favored. Significance Statement Cool-season extreme precipitation regimes often lead to flooding and other societal impacts and represent a significant forecast challenge. We analyze large-scale weather patterns and physical mechanisms in the North Pacific and North America contributing to the occurrence and persistence of extreme precipitation regimes. Recognizing them could promote their predictability since the North Pacific is a climatologically favored area for persistent anomalous large-scale weather patterns. The regimes are characterized by an unusually slow-moving and persistent large-scale weather pattern favoring the southerly flow of subtropical moisture into eastern North America. The persistence, size, and slow-moving nature of the weather pattern are critical to the regimes’ longevity. Storms tracking on the west of high pressure areas provide a feedback mechanism that helps maintain the regimes.
-
Abstract Over the past 20 years, the Hydrological Ensemble Prediction Experiment (HEPEX) international community of practice has advanced the science and practice of hydrological ensemble prediction and its application in impact- and risk-based decision-making, fostering innovations through cutting-edge techniques and data that enhance water-related sectors. Here, we present insights from those 20 years on the key priorities for (co)creating broadly applicable hydrological forecasting systems that add value across spatial scales and time horizons. We highlight the advancement of hydrological forecasting chains through rigorous data management that incorporates diverse, high-quality data sources, data assimilation techniques, and the application of artificial intelligence (AI) to improve predictive accuracy. HEPEX has played a critical role in enhancing the reliability of water resources and water-related risk management globally by standardizing ensemble forecasting. This effort complements HEPEX’s broader initiative to strengthen research to operations, making innovative forecasting solutions both practical and accessible. Additionally, efforts have been made toward supporting the United Nations Early Warnings for All initiative through developing robust and reliable early warning systems by means of global training, education and capacity development, and the sharing of technology. Finally, we note that the integration of advanced science, user-centric methods, and global collaboration can provide a solid framework for improving the prediction and management of hydrological extremes, aligning forecasting systems with the dynamic needs of water resource and risk management in a changing climate. To effectively meet future demands, it is crucial to accelerate the integration of innovative science within operational frameworks, fostering adaptable and resilient hydrological forecasting systems globally.
-
ABSTRACT In recent years, numerous flood events have caused loss of life, widespread disruption, and damage across the globe. These devastating impacts highlight the importance of a better understanding of flood generating processes, their impacts, and their variability under climate and landscape changes. Here, we argue that the ability to better model flooding is underpinned by the grand challenge of understanding flood generation mechanisms and potential impacts. To address this challenge, the World Meteorological Organization‐Global Energy and Water Exchanges (GEWEX) Hydrometeorology Panel (GHP) aims to establish a Global Flood Crosscutting project to propagate flood modeling and research knowledge across regions and to synthesize results at the global scale. This paper outlines a framework for understanding the dynamics and impacts of runoff generation processes and a rationale for the role of a Global Flood Crosscutting project to address these challenges. Within this Global Flood Crosscutting project, we will establish a common terminology and methods to enable the global research community to exchange knowledge and experiences, and to design experiments toward developing actionable recommendations for more effective flood management practices and policies for improved resilience. This harmonization of rich perspectives across disciplines will foster the co‐production of knowledge primed to advance flood research, particularly in the current period of heightened climate variability and rapid change. It will create a new transdisciplinary paradigm for flood science, wherein different dimensions of mechanistic understanding and processes are rigorously considered alongside socioeconomic impacts, early warning communications, and longer‐term adaptation to alleviate flood risks in society.
-
ABSTRACT Urbanization is leading to more frequent flooding as cities have more impervious surfaces and runoff exceeds the capacity of combined sewer systems. In heavy rainfall, contaminated excess water is discharged into the natural environment, damaging ecosystems and threatening drinking water sources. To address these challenges aggravated by climate change, urban blue-green water management systems, such as bioretention cells, are increasingly being adopted. Bioretention cells use substrate and plants adapted to the climate to manage rainwater. They form shallow depressions, allowing infiltration, storage, and gradual evacuation of runoff. In 2018, the City of Trois-Rivières (Québec, Canada) installed 54 bioretention cells along a residential street, several of which were equipped with access points to monitor performance. Groundwater quality was monitored through the installation of piezometers to detect potential contamination. This large-scale project aimed to improve stormwater quality and reduce sewer flows. The studied bioretention cells reduced the flow and generally improved water quality entering the sewer system, as well as the quality of stormwater, with some exceptions. Higher outflow concentrations were observed for contaminants such as manganese and nitrate. The results of this initiative provide useful recommendations for similar projects for urban climate change adaptation.
-
Les inondations causent de lourds dommages tant économiques, sociaux qu'environnementaux, en plus d'avoir des effets sur la santé physique et psychologique des sinistrés.