Votre recherche
Résultats 1 010 ressources
-
Abstract Floods are the most common and threatening natural risk for many countries in the world. Flood risk mapping is therefore of great importance for managing socio-economic and environmental impacts. Several researchers have proposed low-complexity and cost-effective flood mapping solutions that are useful for data scarce environments or at large-scale. Among these approaches, a line of recent research focuses on hydrogeomorphic methods that, due to digital elevation models (DEMs), exploit the causality between past flood events and the hydraulic geometry of floodplains. This study aims to compare the use of freely-available DEMs to support an advanced hydrogeomorphic method, Geomorphic Flood Index (GFI), to map flood-prone areas of the Basento River basin (Italy). The five selected DEMs are obtained from different sources, are characterized by different resolutions, spatial coverage, acquisition process, processing and validation, etc., and include: (i) HydroSHEDS v.1.1 (resolution 3 arc-seconds), hydrologically conditioned, derived primarily from STRM (NASA) and characterized by global coverage; (ii) ASTER GDEM v.3 with a res. of around 30 m (source: METI and NASA) and global coverage; (iii) EU-DEM v. 1.1 (res. 1 arc-second), Pan-European and combining SRTM and ASTER GDEM, customized to obtain a consistency with the EU-Hydro and screened to remove artefacts (source: Copernicus Land Monitoring Service); (iv) TinItaly DEM v. 1.1, (res. 10 m-cell size grid) and produced and distributed by INGV with coverage of the entire Italian territory; (v) Laser Scanner DEM with high resolution (5 m cell size grid) produced on the basis of Ground e Model Keypoint and available as part of the RSDI geoportal of the Basilicata Region with coverage at the regional administrative level. The effects of DEMs on the performance of the GFI calibration on the main reach of the Basento River, and its validation on one of its mountain tributaries (Gallitello Creek), were evaluated with widely accepted statistical metrics, i.e., the Area Under the Receiver Operating Characteristics (ROC) curve (AUC), Accuracy, Sensitivity and Specificity. Results confirmed the merits of the GFI in flood mapping using simple watershed characteristics and showed high Accuracy (AUC reached a value over 0.9 in all simulations) and low dependency on changes in the adopted DEMs and standard flood maps (1D and 2D hydraulic models or three return periods). The EU-DEM was identified as the most suitable data source for supporting GFI mapping with an AUC > 0.97 in the calibration phase for the main river reach. This may be due in part to its appropriate resolution for hydrological application but was also due to its customized pre-processing that supported an optimal description of the river network morphology. Indeed, EU-DEM obtained the highest performances (e.g., Accuracy around 98%) even in the validation phase where better results were expected from the high-resolution DEM (due to the very small size of Gallitello Creek cross-sections). For other DEMs, GFI generally showed an increase in metrics performance when, in the calibration phase, it neglected the floodplains of the river delta, where the standard flood map is produced using a 2D hydraulic model. However, if the DEMs were hydrologically conditioned with a relatively simple algorithm that forced the stream flow in the main river network, the GFI could be applied to the whole Basento watershed, including the delta, with a similar performance.
-
Rivers inherently show heterogeneous sediment sizes and can also show a strong sediment supply variability in time because of natural episodic events or as a consequence of human activities, which alter the characteristics and dynamics of alluvial bars at the macro-scale. The impact of the combination between sediment size heterogeneity and sediment supply variation, or even with other forcings (i.e. hydrology, channel geometry) remains poorly documented. In this work, a physics-based numerical model is applied on a trained reach of a sandy-gravel bed river to investigate the combination of these parameters on bar morphodynamics. The morphodynamic computations are performed with a two-dimensional depth-averaged hydrodynamic solver, internally coupled to a sediment transport and bed evolution module, which estimate the transport of graded sediment and model bed stratigraphy, respectively. A 1 km long reach of the Loire River at Bréhémont (France) is selected to conduct the numerical investigations. The interaction between several forcing mechanisms induces highly complex bar morphodynamic processes in this area.A comprehensive set of high-definition data is available, which allows to study the river morphodynamics for a succession of three flooding events and a period of low flows. Based on this model, a variety of scenarios is presented with the aim of exploring the implications of sediment gradation, geometrical and boundary forcing effects on in situ bars morphodynamics.
-
A full 3D numerical model is used for studying tidal asymmetry, estuarine circulation, and saline intrusion in the Gironde estuary. The model is calibrated and verified using the data measured during two field surveys in the Gironde estuary. Harmonic analysis of numerical results is proposed to understand how the superposition of M2, M4 and M6 components generate a complex estuarine circulation and salinity intrusion in the Gironde estuary. The numerical results show that the M6 component plays a significant role as important as the M4 one in modifying the nature of tidal asymmetry, especially in the Gironde upper estuary. In this case, the use of the phase lag between M2 and M4, neglecting M6, to predict the tidal asymmetry nature could produce errors. The effect of asymmetrical tides on saline intrusion and residual circulation is specifically discussed here.
-
Soil erosion is a significant threat to the environment and long-term land management around the world. Accelerated soil erosion by human activities inflicts extreme changes in terrestrial and aquatic ecosystems, which is not fully surveyed/predicted for the present and probable future at field-scales (30-m). Here, we estimate/predict soil erosion rates by water erosion, (sheet and rill erosion), using three alternative (2.6, 4.5, and 8.5) Shared Socioeconomic Pathway and Representative Concentration Pathway (SSP-RCP) scenarios across the contiguous United States. Field Scale Soil Erosion Model (FSSLM) estimations rely on a high resolution (30-m) G2 erosion model integrated by satellite- and imagery-based estimations of land use and land cover (LULC), gauge observations of long-term precipitation, and scenarios of the Coupled Model Intercomparison Project Phase 6 (CMIP6). The baseline model (2020) estimates soil erosion rates of 2.32 Mg ha 1 yr 1 with current agricultural conservation practices (CPs). Future scenarios with current CPs indicate an increase between 8% to 21% under different combinations of SSP-RCP scenarios of climate and LULC changes. The soil erosion forecast for 2050 suggests that all the climate and LULC scenarios indicate either an increase in extreme events or a change in the spatial location of extremes largely from the southern to the eastern and northeastern regions of the United States.
-
Abstract Microsoft released a U.S.-wide vector building dataset in 2018. Although the vector building layers provide relatively accurate geometries, their use in large-extent geospatial analysis comes at a high computational cost. We used High-Performance Computing (HPC) to develop an algorithm that calculates six summary values for each cell in a raster representation of each U.S. state, excluding Alaska and Hawaii: (1) total footprint coverage, (2) number of unique buildings intersecting each cell, (3) number of building centroids falling inside each cell, and area of the (4) average, (5) smallest, and (6) largest area of buildings that intersect each cell. These values are represented as raster layers with 30 m cell size covering the 48 conterminous states. We also identify errors in the original building dataset. We evaluate precision and recall in the data for three large U.S. urban areas. Precision is high and comparable to results reported by Microsoft while recall is high for buildings with footprints larger than 200 m2 but lower for progressively smaller buildings.
-
The 2019 Global Assessment Report on Disaster Risk Reduction (GAR) is informed by the latest data – including Sendai Framework target reporting by countries using the Sendai Framework Monitor
-
While there is a large body of literature focusing on global-level flood hazard management, including preparedness, response, and recovery, there is a lack of research examining the patterns and dynamics of community-level flood management with a focus on local engagement and institutional mechanism. The present research explores how local communities mobilize themselves, both individually and institutionally, to respond to emerging flood-related situations and recover from their impacts. A case study approach was applied to investigate two towns in the Red River Valley of Manitoba, Canada: St. Adolphe and Ste. Agathe. Data collection consisted of in-depth interviews and oral histories provided by local residents, in addition to analysis of secondary official records and documents. The findings revealed that local community-level flood preparedness, response, and recovery in the Province of Manitoba are primarily designed, governed, managed, and evaluated by the provincial government authorities using a top-down approach. The non-participatory nature of this approach makes community members reluctant to engage with precautionary and response measures, which in turn results in undesired losses and damages. It is recommended that the Government of Manitoba develop and implement a collaborative and participatory community-level flood management approach that draws upon the accumulated experiential knowledge of local stakeholders and institutions.
-
AbstractFloods are the most frequent natural disaster in Canada, putting Canadian lives and property at risk. Projected variations in precipitation and temperature are expected to further intensify...
-
The mountain headwater Bow River at Banff, Alberta, Canada was subject to a large flood in June 2013, over which considerable debate has ensued regarding its probability of occurrence. It is therefore instructive to consider what information long term streamflow discharge records provide about environmental change in the Upper Bow River basin above Banff. Though protected as part of Banff National Park, since 1885, the basin has experienced considerable climate and land cover changes, each of which has the potential to impact observations, and hence the interpretations of flood probability. The Bow River at Banff hydrometric station is one of Canada's longest operating reference hydrological basin network stations and so has great value for assessing changes in flow regime over time. Furthermore, the station measures a river that provides an extremely important water supply for Calgary and irrigation district downstream and so is of great interest for assessing regional water security. These records were examined for changes in several flood attributes and to determine whether flow changes may have been related to landscape change within the basin as caused by forest fires, conversion from grasslands to forest with fire suppression, and regional climate variations and/or trends. Floods in the Upper Bow River are generated by both snowmelt and rain-on-snow (ROS) events, the latter type which include floods events generated by spatially and temporally large storms such as occurred in 2013. The two types of floods also have different frequency characteristics. Snowmelt and ROS flood attributes were not correlated significantly with any climate index or with burned area except that snowmelt event duration correlated negatively to the Pacific Decadal Oscillation. While there is a significant negative trend in all floods over the past 100years, when separated based on generating process, neither snowmelt floods nor large ROS floods associated with mesoscale storms show any trends over time. Despite extensive changes to the landscape of the basin and in within the climate system, the flood regime remains unchanged, something identified at smaller scales in the region but never at larger scales.
-
Abstract The present study analyses the impacts of past and future climate change on extreme weather events for southern parts of Canada from 1981 to 2100. A set of precipitation and temperature‐based indices were computed using the downscaled Coupled Model Intercomparison Project Phase 5 (CMIP5) multi‐model ensemble projections at 8 km resolution over the 21st Century for two representative concentration pathway (RCP) scenarios: RCP4.5 and RCP8.5. The results show that this region is expected to experience stronger warming and a higher increase in precipitation extremes in future. Generally, projected changes in minimum temperature will be greater than changes in maximum temperature, as shown by respective indices. A decrease in frost days and an increase in warm nights will be expected. By 2100 there will be no cool nights and cool days. Daily minimum and maximum temperatures will increase by 12 and 7°C, respectively, under the RCP8.5 scenario, when compared with the reference period 1981–2000. The highest warming in minimum temperature and decrease in cool nights and days will occur in Ontario and Quebec provinces close to the Great Lakes and Hudson Bay. The highest warming in maximum temperature will occur in the southern parts of Alberta and Saskatchewan. Annual total precipitation is expected to increase by about 16% and the occurrence of heavy precipitation events by five days. The highest increase in annual total precipitation will occur in the northern parts of Ontario and Quebec and in western British Columbia.