Votre recherche
Résultats 1 711 ressources
-
Abstract Climate change is affecting freshwater systems, leading to increased water temperatures, which is posing a threat to freshwater ecological communities. In the Nechako River, a water management program has been in place since the 1980s to maintain water temperatures at 20°C during the migration of Sockeye salmon. However, the program's effectiveness in mitigating the impacts of climate change on resident species like Chinook salmon's thermal exposure is uncertain. In this study, we utilised the CEQUEAU hydrological model and life stage-specific physiological data to evaluate the consequences of the current program on Chinook salmon's thermal exposure under two contrasting climate change and socio-economic scenarios (SSP2-4.5 and SSP5-8.5). The results indicate that the thermal exposure risk is projected to be above the optimal threshold for parr and adult life stages under both scenarios relative to the 1980s. These life stages could face an increase in thermal exposure ranging from up to 2 and 5 times by 2090s relative to the 1980s during the months they occurred under the SSP5-8.5 scenario, including when the program is active (July 20th to August 20th). Additionally, our study shows that climate change will result in a substantial rise in cumulative heat degree days, ranging from 1.9 to 5.8 times (2050s) and 2.9 to 12.9 times (2090s) in comparison to the 1980s under SSP5-8.5. Our study highlights the need for a holistic approach to review the current Nechako management plan and consider all species in the Nechako River system in the face of climate change.
-
Generalized Additive Models (GAMs) are introduced in this study for the regional estimation of low-flow characteristics at ungauged basins and compared to other approaches commonly used for this purpose. GAMs provide more flexibility in the shape of the relationships between the response and explanatory variables in comparison to classical models such as multiple linear regression (MLR). Homogeneous regions are defined here using the methods of hierarchical cluster analysis, canonical correlation analysis and region of influence. GAMs and MLR are then used within the delineated regions and also for the whole study area. In addition, a spatial interpolation method is also tested. The different models are applied for the regional estimation of summer and winter low-flow quantiles at stations in Quebec, Canada. Results show that for a given regional delineation method, GAMs provide improved performances compared to MLR.
-
The interaction of water flow, ice, and structures is common in fluvial ice processes, particularly around Ice Control Structures (ICSs) that are used to manage and prevent ice jam floods. To evaluate the effectiveness of ICSs, it is essential to understand the complex interaction between water flow, ice and the structure. Numerical modeling is a valuable tool that can facilitate such understanding. Until now, classical Eulerian mesh-based methods have not been evaluated for the simulation of ice interaction with ICS. In this paper we evaluate the capability, accuracy, and efficiency of a coupled Computational Fluid Dynamic (CFD) and multi-body motion numerical model, based on the mesh-based FLOW-3D V.2023 R1 software for simulation of ice-structure interactions in several benchmark cases. The model’s performance was compared with results from meshless-based models (performed by others) for the same laboratory test cases that were used as a reference for the comparison. To this end, simulation results from a range of dam break laboratory experiments were analyzed, encompassing varying numbers of floating objects with distinct characteristics, both in the presence and absence of ICS, and under different downstream water levels. The results show that the overall accuracy of the FLOW-3D model under various experimental conditions resulted in a RMSE of 0.0534 as opposed to an overall RMSE of 0.0599 for the meshless methods. Instabilities were observed in the FLOW-3D model for more complex phenomena that involve open boundaries and a larger number of blocks. Although the FLOW-3D model exhibited a similar computational time to the GPU-accelerated meshless-based models, constraints on the processors speed and the number of cores available for use by the processors could limit the computational time.
-
Abstract. Efficient adaptation strategies to climate change require the estimation of future impacts and the uncertainty surrounding this estimation. Over- or underestimating future uncertainty may lead to maladaptation. Hydrological impact studies typically use a top-down approach in which multiple climate models are used to assess the uncertainty related to the climate model structure and climate sensitivity. Despite ongoing debate, impact modelers have typically embraced the concept of “model democracy”, in which each climate model is considered equally fit. The newer Coupled Model Intercomparison Project Phase 6 (CMIP6) simulations, with several models showing a climate sensitivity larger than that of Phase 5 (CMIP5) and larger than the likely range based on past climate information and understanding of planetary physics, have reignited the model democracy debate. Some have suggested that “hot” models be removed from impact studies to avoid skewing impact results toward unlikely futures. Indeed, the inclusion of these models in impact studies carries a significant risk of overestimating the impact of climate change. This large-sample study looks at the impact of removing hot models on the projections of future streamflow over 3107 North American catchments. More precisely, the variability in future projections of mean, high, and low flows is evaluated using an ensemble of 19 CMIP6 general circulation models (GCMs), 5 of which are deemed hot based on their global equilibrium climate sensitivity (ECS). The results show that the reduced ensemble of 14 climate models provides streamflow projections with reduced future variability for Canada, Alaska, the Southeast US, and along the Pacific coast. Elsewhere, the reduced ensemble has either no impact or results in increased variability in future streamflow, indicating that global outlier climate models do not necessarily provide regional outlier projections of future impacts. These results emphasize the delicate nature of climate model selection, especially based on global fitness metrics that may not be appropriate for local and regional assessments.
-
Abstract An alternate dynamical core that employs the unified equations of A. Arakawa and C.S. Konor (2009) has been developed within Environment and Climate change Canada’s GEM (Global Environmental Multiscale) atmospheric model. As in the operational GEM dynamical core, the novel core utilizes the same fully-implicit two-time-level semi-Lagrangian scheme for time discretization while the log-pressure-based terrain-following vertical coordinate has been slightly adapted. Overall, the new dynamical core implementation required only minor changes to the existing informatics code of the GEM model and from a computational performance perspective, the new core does not incur any significant additional cost. A broad range of tests – that include both two-dimensional idealized theoretical cases and three-dimensional deterministic forecasts covering both hydrostatic and non-hydrostatic scales–have been carried out to evaluate the performance of the new dynamical core. For all the tested cases, when compared to the operational GEM model, the new dynamical core based on the unified equations has been found to produce statistically equivalent results. These results imply that the unified equations can be adopted for operational numerical weather prediction that would employ a single soundproof system of equations to produce reliable forecasts for all meteorological scales of interest with negligible changes for the computational overhead.
-
The Penman-Monteith reference evapotranspiration (ET0) formulation was forced with humidity, radiation, and wind speed (HRW) fields simulated by four reanalyses in order to simulate hydrologic processes over six mid-sized nivo-pluvial watersheds in southern Quebec, Canada. The resulting simulated hydrologic response is comparable to an empirical ET0 formulation based exclusively on air temperature. However, Penman-Montheith provides a sounder representation of the existing relations between evapotranspiration fluctuations and climate drivers. Correcting HRW fields significantly improves the hydrologic bias over the pluvial period (June to November). The latter did not translate into an increase of the hydrologic performance according to the Kling-Gupta Efficiency (KGE) metric. The suggested approach allows for the implementation of physically-based ET0 formulations where HRW observations are insufficient for the calibration and validation of hydrologic models and a potential reinforcement of the confidence affecting the projection of low flow regimes and water availability.
-
Abstract In water resources applications (e.g., streamflow, rainfall‐runoff, urban water demand [UWD], etc.), ensemble member selection and ensemble member weighting are two difficult yet important tasks in the development of ensemble forecasting systems. We propose and test a stochastic data‐driven ensemble forecasting framework that uses archived deterministic forecasts as input and results in probabilistic water resources forecasts. In addition to input data and (ensemble) model output uncertainty, the proposed approach integrates both ensemble member selection and weighting uncertainties, using input variable selection and data‐driven methods, respectively. Therefore, it does not require one to perform ensemble member selection and weighting separately. We applied the proposed forecasting framework to a previous real‐world case study in Montreal, Canada, to forecast daily UWD at multiple lead times. Using wavelet‐based forecasts as input data, we develop the Ensemble Wavelet‐Stochastic Data‐Driven Forecasting Framework, the first multiwavelet ensemble stochastic forecasting framework that produces probabilistic forecasts. For the considered case study, several variants of Ensemble Wavelet‐Stochastic Data‐Driven Forecasting Framework, produced using different input variable selection methods (partial correlation input selection and Edgeworth Approximations‐based conditional mutual information) and data‐driven models (multiple linear regression, extreme learning machines, and second‐order Volterra series models), are shown to outperform wavelet‐ and nonwavelet‐based benchmarks, especially during a heat wave (first time studied in the UWD forecasting literature). , Key Points A stochastic data‐driven ensemble framework is introduced for probabilistic water resources forecasting Ensemble member selection and weighting uncertainties are explicitly considered alongside input data and model output uncertainties Wavelet‐based model outputs are used as input to the framework for an urban water demand forecasting study outperforming benchmark methods
-
Abstract Flow duration curves (FDC) are used to obtain daily streamflow series at ungauged sites. In this study, functional multiple regression (FMR) is proposed for FDC estimation. Its natural framework for dealing with curves allows obtaining the FDC as a whole instead of a limited number of single points. FMR assessment is performed through a case study in Quebec, Canada. FMR provides a better mean FDC estimation when obtained over sites by considering simultaneously all FDC quantiles in the assessment of each given site. However, traditional regression provides a better mean FDC estimation when obtained over given FDC quantiles by considering all sites in the assessment of each quantile separately. Mean daily streamflow estimation is similar; yet FMR provides an improved estimation for most sites. Furthermore, FMR represents a more suitable framework and provides a number of practical advantages, such as insight into descriptor influence on FDC quantiles. Hence, traditional regression may be preferred if only few FDC quantiles are of interest; whereas FMR would be more suitable if a large number of FDC quantiles is of interest, and therefore to estimate daily streamflows.
-
Abstract. Natural hazards can be seen as a function of a specific natural process and human (economic) activity. Whereby the bulk of literature on natural hazard management has its focus on the natural process, an increasing number of scholars is emphasizing the importance of human activity in this context. Existing literature has identified certain socio-economic factors that determine the impact of natural disasters on society. The purpose of this paper is to highlight the effects of the institutional framework that influences human behavior by setting incentives and to point out the importance of institutional vulnerability. Results from an empirical investigation of large scale natural disasters between 1984 and 2004 show that countries with better institutions experience less victims and lower economic losses from natural disasters. In addition, the results suggest a non-linear relationship between economic development and economic disaster losses. The suggestions in this paper have implications for the discussion on how to deal with the adverse effects of natural hazards and how to develop efficient adaption strategies.