Votre recherche
Résultats 846 ressources
-
Many regions are becoming subject to successive flooding and with climate change taking its toll, it is no surprise that we observe a growing interest for risk avoidance strategies such as relocation. Cost-benefit analysis is the dominant tool used by decision-makers to assess flood risk avoidance projects. Yet, few guidelines are available about how to implement such analysis. This paper advocates for a probabilistic cost-benefit analysis and details a step-by-step procedure via a real-world example. The results show that relocation can be a cost-effective strategy for many high-risk properties and neighborhoods. The level of indemnities and the inclusion of intangible losses are two key drivers of profitability. The paper also analyzes three distinct designs of relocation programs. The results reveal that proactive and innovative schemes, such as managed retreat and usufruct arrangements, constitute worthwhile alternatives to a more conventional post-flood response design.
-
Résumé Au Québec, la dynamique fluviale de la rivière des Escoumins a été perturbée par l'industrie forestière pendant plus d'un siècle. Un barrage a notamment été construit près de l'embouchure en 1846, puis démantelé en 2013. Ces perturbations ont entraîné des répercussions importantes sur l'équilibre du cours d'eau et sur l'habitat du saumon atlantique. Cette étude propose donc de caractériser la dynamique fluviale de la rivière des Escoumins et d'analyser les impacts du démantèlement du barrage dans une perspective de restauration des processus hydrogéomorphologiques et d'amélioration de l'habitat du saumon atlantique. Les résultats suggèrent que la trajectoire de la rivière a évolué différemment en fonction du style fluvial et de la composition granulométrique de chacun de ses segments homogènes. Toutefois, ce sont les activités de la drave et le démantèlement du barrage qui semblent avoir été les facteurs de contrôle les plus importants sur l'évolution de la trajectoire du cours d'eau. Le démantèlement a notamment permis la restauration de processus hydrogéomorphologiques et la libre circulation des salmonidés. Une meilleure procédure entourant le démantèlement des barrages et leur suivi devrait donc être mise en place au Canada afin de favoriser cette pratique . , Abstract In Quebec, the fluvial dynamics of the Escoumins River have been disturbed by the forestry industry for over a century. Most specifically, a dam was built near the mouth of the river in 1846 and dismantled in 2013. These disturbances had significant repercussions on the equilibrium of the river and Atlantic salmon habitat. This study therefore proposes to characterize the fluvial dynamics of the Escoumins River and to analyze the impacts of the dam dismantling from the perspective of restoring hydrogeomorphological processes and improving Atlantic salmon habitat. The results suggest that the trajectory of the river evolved differently depending on the fluvial style and the grain size composition of each of its homogeneous segments. However, log drive activities in river and dam removal appear to have been the most important controlling factors on the evolution of the stream trajectory. The dismantling notably allowed the restoration of hydrogeomorphological processes and the free movement of salmonids. A better procedure for dam removal and monitoring should be put in place in Canada to encourage this practice . , Messages clés Les activités de la drave et le démantèlement du barrage ont fortement affecté la trajectoire hydrogéomorphologique de la rivière des Escoumins, au Québec. Un démantèlement de barrage permet une restauration globale de l'écosystème fluvial et de ses processus hydrogéomorphologiques en plus d'améliorer les habitats disponibles pour les espèces aquatiques. Le démantèlement des barrages désuets ou désaffectés doit être considéré pour la restauration des écosystèmes fluviaux et une meilleure procédure entourant cette pratique doit être mise en place au Canada.
-
Abstract For years, Japanese knotweed ( Reynoutria japonica ) has been suspected of accelerating riverbank erosion, despite a lack of convincing evidence. The stems of this invasive plant die back following the first autumn frosts, leaving the soil unprotected during winter and spring floods. In Québec (Canada), riverbank erosion may also be accentuated by ice during mechanical ice breakups. The objective of this study was to evaluate the influence of knotweed on riverbank erosion along a river invaded by the species, within a context of floods with ice. The elevation along 120 cross‐sectional riverbank profiles, occupied or not by knotweed, was measured before and after the spring flood of 2019. On average, riverbanks occupied by knotweed had nearly 3 cm more soil erosion than riverbanks without knotweed, a statistically significant difference. Stem density also influenced erosion: the higher the density, the greater the soil loss. Certain riverside conditions, such as the slope of the riverbank or being located on an islet, interacted with knotweed, further accentuating erosion. Soil losses measured between November 2018 and May–June 2019 were particularly pronounced, but the spring flood was also exceptional, with a recurrence interval close to 50 years. On the other hand, soil loss from rivers invaded by knotweed can be expected to increase over time, as this invasive species spreads rapidly in riparian habitats.
-
Sensitive clays are known for producing retrogressive landslides, also called spread or flowslides. The key characteristics associated with the occurrence of these landslides on a sensitive clay slope must be assessed, and the potential retrogressive distance must be evaluated. Common risk analysis methods include empirical methods for estimating the distance of potential retrogression, analytical limit equilibrium methods, numerical modelling methods using the strength reduction technique, and the integration of a progressive failure mechanism into numerical methods. Methods developed for zoning purposes in Norway and Quebec provide conservative results in most cases, even if they don’t cover the worst cases scenario. A flowslide can be partially analysed using analytical limit equilibrium methods and numerical methods having strength reduction factor tools. Numerical modelling of progressive failure mechanisms using numerical methods can define the critical parameters of spread-type landslides, such as critical unloading and the retrogression distance of the failure. Continuous improvements to the large-deformation numerical modeling approach allow its application to all types of sensitive clay landslides.
-
The Saint-Jean River (SRJ) in Eastern Canada is prone to the formation of very large rafts of wood. Managers of the SJR suspected these jams to influence salmon migration and carried out a dismantling operation to remove large wood accumulated in a 1.2 km long wood raft. This operation became a great opportunity to address key issues relating to large wood dynamics in a fluvial system: residence time and flood contribution to wood recruitment and transport. During the dismantling, we systematically sampled 319 trees from which year of death could be estimated from dendrochronology and year of accumulation in the raft could be obtained from satellite and aerial photos. These two dates allowed us to quantify the residence time for 262 datable large wood (LW) within the fluvial system, to examine the peak years of LW recruitment and to correlate the raft growth rate with hydrometeorological conditions since 1993. The results also emphasized four types of LW flood related to wood dynamics: 1) an erosive flood that produces a large amount of wood in river, 2) a mobilizing flood that carries large quantities of wood, 3) a flood mix that both recruits and transports large quantities of wood, and 4) an ice-breakup flood.
-
Abstract Large wood (LW) is a ubiquitous feature in rivers of forested watersheds worldwide, and its importance for river diversity has been recognized for several decades. Although the role of LW in fluvial dynamics has been extensively documented, there is a need to better quantify the most significant components of LW budgets at the river scale. The purpose of our study was to quantify each component (input, accumulation, and output) of a LW budget at the reach and watershed scales for different time periods (i.e. a 50‐year period, decadal cycle, and interannual cycle). The LW budget was quantified by measuring the volumes of LW inputs, accumulations, and outputs within river sections that were finally evacuated from the watershed. The study site included three unusually large but natural wood rafts in the delta of the Saint‐Jean River (SJR; Québec, Canada) that have accumulated all LW exported from the watershed for the last 50 years. We observed an increase in fluvial dynamics since 2004, which led to larger LW recruitment and a greater LW volume trapped in the river corridor, suggesting that the system is not in equilibrium in terms of the wood budget but is rather recovering from previous human pressures as well as adjusting to hydroclimatic changes. The results reveal the large variability in the LW budget dynamics during the 50‐year period and allow us to examine the eco‐hydromorphological trajectory that highlights key variables (discharge, erosion rates, bar surface area, sinuosity, wood mobility, and wood retention). Knowledge on the dynamics of these variables improves our understanding of the historical and future trajectories of LW dynamics and fluvial dynamics in gravel‐bed rivers. Extreme events (flood and ice‐melt) significantly contribute to LW dynamics in the SJR river system. Copyright © 2017 John Wiley & Sons, Ltd.
-
Large-scale flood risk assessment is essential in supporting national and global policies, emergency operations and land-use management. The present study proposes a cost-efficient method for the large-scale mapping of direct economic flood damage in data-scarce environments. The proposed framework consists of three main stages: (i) deriving a water depth map through a geomorphic method based on a supervised linear binary classification; (ii) generating an exposure land-use map developed from multi-spectral Landsat 8 satellite images using a machine-learning classification algorithm; and (iii) performing a flood damage assessment using a GIS tool, based on the vulnerability (depth–damage) curves method. The proposed integrated method was applied over the entire country of Romania (including minor order basins) for a 100-year return time at 30-m resolution. The results showed how the description of flood risk may especially benefit from the ability of the proposed cost-efficient model to carry out large-scale analyses in data-scarce environments. This approach may help in performing and updating risk assessments and management, taking into account the temporal and spatial changes in hazard, exposure, and vulnerability.
-
Abstract Floods are the most common and threatening natural risk for many countries in the world. Flood risk mapping is therefore of great importance for managing socio-economic and environmental impacts. Several researchers have proposed low-complexity and cost-effective flood mapping solutions that are useful for data scarce environments or at large-scale. Among these approaches, a line of recent research focuses on hydrogeomorphic methods that, due to digital elevation models (DEMs), exploit the causality between past flood events and the hydraulic geometry of floodplains. This study aims to compare the use of freely-available DEMs to support an advanced hydrogeomorphic method, Geomorphic Flood Index (GFI), to map flood-prone areas of the Basento River basin (Italy). The five selected DEMs are obtained from different sources, are characterized by different resolutions, spatial coverage, acquisition process, processing and validation, etc., and include: (i) HydroSHEDS v.1.1 (resolution 3 arc-seconds), hydrologically conditioned, derived primarily from STRM (NASA) and characterized by global coverage; (ii) ASTER GDEM v.3 with a res. of around 30 m (source: METI and NASA) and global coverage; (iii) EU-DEM v. 1.1 (res. 1 arc-second), Pan-European and combining SRTM and ASTER GDEM, customized to obtain a consistency with the EU-Hydro and screened to remove artefacts (source: Copernicus Land Monitoring Service); (iv) TinItaly DEM v. 1.1, (res. 10 m-cell size grid) and produced and distributed by INGV with coverage of the entire Italian territory; (v) Laser Scanner DEM with high resolution (5 m cell size grid) produced on the basis of Ground e Model Keypoint and available as part of the RSDI geoportal of the Basilicata Region with coverage at the regional administrative level. The effects of DEMs on the performance of the GFI calibration on the main reach of the Basento River, and its validation on one of its mountain tributaries (Gallitello Creek), were evaluated with widely accepted statistical metrics, i.e., the Area Under the Receiver Operating Characteristics (ROC) curve (AUC), Accuracy, Sensitivity and Specificity. Results confirmed the merits of the GFI in flood mapping using simple watershed characteristics and showed high Accuracy (AUC reached a value over 0.9 in all simulations) and low dependency on changes in the adopted DEMs and standard flood maps (1D and 2D hydraulic models or three return periods). The EU-DEM was identified as the most suitable data source for supporting GFI mapping with an AUC > 0.97 in the calibration phase for the main river reach. This may be due in part to its appropriate resolution for hydrological application but was also due to its customized pre-processing that supported an optimal description of the river network morphology. Indeed, EU-DEM obtained the highest performances (e.g., Accuracy around 98%) even in the validation phase where better results were expected from the high-resolution DEM (due to the very small size of Gallitello Creek cross-sections). For other DEMs, GFI generally showed an increase in metrics performance when, in the calibration phase, it neglected the floodplains of the river delta, where the standard flood map is produced using a 2D hydraulic model. However, if the DEMs were hydrologically conditioned with a relatively simple algorithm that forced the stream flow in the main river network, the GFI could be applied to the whole Basento watershed, including the delta, with a similar performance.