Votre recherche
Résultats 846 ressources
-
Abstract Background The Canadian government’s response to the ongoing COVID-19 pandemic included the implementation of several restrictive measures since March 2020. These actions sought to decrease social contact and increase physical distancing, including that within universities. Such constraints were required to impede the transmission of the virus; however, concerns remain about their impact on the sexual and intimate relationships of university employees and students. Aim This study examined the associations between COVID-19–related stress and sexual frequency, sexual satisfaction, and relationship satisfaction, also testing the mediating role of psychological distress. Methods The models were tested with Canadian data collected from university employees and students in 2 phases: the first wave in April-May 2020 (T1; n = 2754) and the second wave in November-December 2021 (T2; n = 1430), 18 months afterward. Participants completed self-report questionnaires online. Path analyses were performed to test the associations of the mediation models. Outcomes The principal outcomes included psychological distress determined via the Patient Health Questionnaire–4, relationship satisfaction measured via the Dyadic Adjustment Scale, and sexual satisfaction and sexual frequency ascertained through a single item each. Results Overall, COVID-19–related stress was associated with higher psychological distress, which in turn was related to lower sexual frequency, sexual satisfaction, and relationship satisfaction. Similar results were obtained with T1 and T2 data, indicating the mediating effect of psychological distress. Clinical Implications These findings increase scholarly comprehension of the negative associations between stress/distress and sexual and romantic relationships. Sexuality and close relationships are vital to the quality of human life; thus, targeted interventions should be developed to reduce COVID-19–related stress and its impact on sexual and romantic relationships to mitigate the long-term influences of this unique global challenge. Strengths and Limitations To our knowledge, this study is the first to use a large sample size and replicate findings in 2 waves. Nonetheless, it is limited by the use of cross-sectional data. Longitudinal studies with the same participants are mandated to better understand the evolution of these outcomes. Conclusion COVID-19–related stress and psychological distress were found among participating university students and employees and were associated with lower sexual satisfaction, sexual frequency, and intimate relationship satisfaction. These results were observed at the early onset of the pandemic and 18 months afterward, suggesting that the stress generated by the pandemic were not mere reactions to the onset of the pandemic but persisted over time.
-
En raison de la pandémie, en mars 2020, les adolescents et les adolescentes se sont retrouvés confinés à leur domicile pour un temps indéterminé. Afin de mieux comprendre leur vécu dans ce contexte particulier, notamment en ce qui concerne leurs habitudes de vie, des entrevues de groupe (n=10) ont été réalisées auprès de 57 jeunes fréquentant trois écoles secondaires du Saguenay-Lac-Saint-Jean en 2021-2022. Les résultats soulignent la pertinence de mieux comprendre leur vécu et leurs besoins en temps de crise, de même que l’importance du rôle des milieux scolaires quant à la pratique d’activité physique chez les jeunes, et ce, en vue d’améliorer la qualité du soutien qui leur est offert.
-
Abstract Hydrosedimentary connectivity is a key concept referring to the potential fluxes of water and sediment moving throughout a catchment. In forested catchments, these fluxes are prone to alterations caused by anthropogenic and natural disturbances. In this study, we modelled the interannual spatiotemporal evolution of hydrosedimentary connectivity influenced by forest cover change over the last four decades in the Mont‐Louis catchment, a medium snow‐dominated mountainous catchment in eastern Canada, which had 62% of its total surface affected by forest disturbances (mainly logging, but also wildfires and diseases) between 1979 and 2017. Using a geomorphometric index of connectivity (IC) and a historical forest cover database, we produced one IC map per year that considered anthropogenic and natural disturbances affecting the forest cover of the studied catchment. To account for vegetation recovery, forest disturbances were weighted with local hydrological recovery rates. Over the four decades, the mean IC of the Mont‐Louis catchment dramatically increased by 35% in response to different types of disturbances. The spatial evolution of IC over the whole catchment and at the sub‐catchment scale revealed that disturbance location has a strong influence on hydrosedimentary connectivity to the main channel. Our results also highlight the sharp contrast between IC computed from topography‐based impedance to those computed from vegetation‐based impedance. Forest disturbances appear to connect hillslopes with the hydrological network by producing pathways for sediment and water. Finally, the proposed reproducible framework could be useful for predicting the potential impact of harvesting and preventing damage to fish habitat and sensitive river reaches.
-
Introduction: Over the past years, the Outaouais region (Quebec, Canada) and their residents have had to endure no less than five natural disasters (floods, tornadoes). These disasters are likely to have a variety of consequences on the physical and mental health of adolescents, as well as on their personal, family, school and social lives. The experiences of teenagers are also likely to vary depending on whether they live in rural or urban areas. Method: Data were collected via a self-administered questionnaire in February 2022. A total of 1307 teenagers from two high schools participated in the study by completing an online survey. The questionnaire measured various aspects of the youth's mental health using validated tests, such as manifestations of post-traumatic stress, anxiety and depression, as well as the presence of suicidal thoughts and self-harm. Other aspects of the youth's experience were measured, including their level of social support, school engagement, alcohol and drug use, and coping strategies. Results: One third of young students (n=1307) were experiencing depressive symptoms and suicidal thoughts, as well as significant daily stress. More than 25% of the students had moderate or severe anxiety and thoughts of self-harm. These problems were significantly more prevalent among youths with prior exposure to a natural disaster. The study data also revealed that youths living in rural areas had a more worrying profile than those living in urban areas. Conclusion: Similar to other studies (Ran et al., 2015; Stratta et al., 2014), our research data revealed that youths living in rural areas presented a more concerning profile than those residing in urban areas. It therefore seems important, in future studies and services, to focus more specifically on these teenagers to better understand their needs and to develop adapted services more likely to meet them.
-
Il est largement reconnu que les catastrophes naturelles engendrent des conséquences importantes pour les populations exposées. Les jeunes sont particulièrement vulnérables à développer des problèmes de santé mentale après un désastre, notamment des pensées suicidaires. Or, dans le contexte de la pandémie de la COVID-19, il s’avère important de documenter ce phénomène afin d’intervenir efficacement, d’autant plus que les catastrophes et les risques de pandémie tendent à augmenter. Cette revue systématique des écrits vise à identifier les facteurs associés positivement ou négativement à la présence de pensées suicidaires chez les jeunes à la suite d’une catastrophe. Au total, 24 articles scientifiques ont été retenus pour l’analyse et ont permis de dégager plusieurs facteurs associés aux pensées suicidaires, tels que la dépression, le stress post-traumatique, l’âge, l’exposition au désastre, ainsi que les traumatismes antérieurs. Des pistes concrètes découlent de la présente analyse afin d’orienter l’intervention auprès des jeunes dans ce contexte. , It is widely recognized that natural disasters have significant consequences for exposed populations. Teenagers are particularly vulnerable to develop mental health problems after a disaster, including suicidal thoughts. However, in the context of the COVID-19 pandemic, it is important to document this reality in order to prevent suicidal thoughts, especially as disasters and pandemic risks tend to increase. This systematic review of the literature aims to identify factors associated positively or negatively with the presence of suicidal thoughts in teenagers following a disaster. 24 scientific articles were selected for analysis and have allowed to identify several associated factors, such as depression, post-traumatic stress, age, exposure to disaster, and previous trauma. Concrete avenues emerge from this analysis to guide intervention with teenagers in this context.
-
Atmospheric blockings are generally associated with large-scale high-pressure systems that interrupt west-to-east atmospheric flow in mid and high latitudes. Blockings cause several days of quasi-stationary weather conditions, and therefore can result in monthly or seasonal climate anomalies and extreme weather events on the affected regions. In this paper, the long-term coupled CERA-20C reanalysis data from 1901 to 2010 are used to evaluate the links between blocking events over the North Atlantic north of 35° N, and atmospheric and oceanic modes of climate variability on decadal time scales. This study indicates more frequent and longer lasting blocking events than previous studies using other reanalyses products. A strong relationship was found between North Atlantic blocking events and North Atlantic Oscillation (NAO), Atlantic Multidecadal Oscillation (AMO) and Baffin Island–West Atlantic (BWA) indices, in fall, winter and spring. More blocking events occur during the negative phases of the NAO index and positive phases of the BWA mode. In some situations, the BWA patterns provide clearer links with the North Atlantic blocking occurrence than with the NAO alone. The correlation between the synchronous occurrences of AMO and blocking is generally weak, although it does increase for a lag of about 6–10 years. Convergent cross mapping (CCM) furthermore demonstrates a significant two-way causal effect between blocking occurrences and the NAO and BWA indices. Finally, while we find no significant trends in blocking frequencies over the last 110 years in the Northern Hemisphere, these events become longer lasting in summer and fall, and more intense in spring in the North Atlantic.
-
The article: Atmospheric blocking events in the North Atlantic: trends and links to climate anomalies and teleconnections, written by Hussein Wazneh, Philippe Gachon, René Laprise, Anne de Vernal, Bruno Tremblay was originally published electronically on the publisher’s internet portal (currently SpringerLink) on 5 January 2021 without open access.
-
Many studies have projected malaria risks with climate change scenarios by modelling one or two environmental variables and without the consideration of malaria control interventions. We aimed to predict the risk of malaria with climate change considering the influence of rainfall, humidity, temperatures, vegetation, and vector control interventions (indoor residual spraying (IRS) and long-lasting insecticidal nets (LLIN)). We used negative binomial models based on weekly malaria data from six facility-based surveillance sites in Uganda from 2010–2018, to estimate associations between malaria, environmental variables and interventions, accounting for the non-linearity of environmental variables. Associations were applied to future climate scenarios to predict malaria distribution using an ensemble of Regional Climate Models under two Representative Concentration Pathways (RCP4.5 and RCP8.5). Predictions including interaction effects between environmental variables and interventions were also explored. The results showed upward trends in the annual malaria cases by 25% to 30% by 2050s in the absence of intervention but there was great variability in the predictions (historical vs RCP 4.5 medians [Min–Max]: 16,785 [9,902–74,382] vs 21,289 [11,796–70,606]). The combination of IRS and LLIN, IRS alone, and LLIN alone would contribute to reducing the malaria burden by 76%, 63% and 35% respectively. Similar conclusions were drawn from the predictions of the models with and without interactions between environmental factors and interventions, suggesting that the interactions have no added value for the predictions. The results highlight the need for maintaining vector control interventions for malaria prevention and control in the context of climate change given the potential public health and economic implications of increasing malaria in Uganda.
-
Background: Few studies have explored how vector control interventions may modify associations between environmental factors and malaria. Methods: We used weekly malaria cases reported from six public health facilities in Uganda. Environmental variables (temperature, rainfall, humidity, and vegetation) were extracted from remote sensing sources. The non-linearity of environmental variables was investigated, and negative binomial regression models were used to explore the influence of indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs) on associations between environmental factors and malaria incident cases for each site as well as pooled across the facilities, with or without considering the interaction between environmental variables and vector control interventions. Results: An average of 73.3 weekly malaria cases per site (range: 0–597) occurred between 2010 and 2018. From the pooled model, malaria risk related to environmental variables was reduced by about 35% with LLINs and 63% with IRS. Significant interactions were observed between some environmental variables and vector control interventions. There was site-specific variability in the shape of the environment–malaria risk relationship and in the influence of interventions (6 to 72% reduction in cases with LLINs and 43 to 74% with IRS). Conclusion: The influence of vector control interventions on the malaria–environment relationship need to be considered at a local scale in order to efficiently guide control programs.
-
Studies have estimated the impact of the environment on malaria incidence although few have explored the differential impact due to malaria control interventions. Therefore, the objective of the study was to evaluate the effect of indoor residual spraying (IRS) on the relationship between malaria and environment (i.e. rainfall, temperatures, humidity, and vegetation) using data from a dynamic cohort of children from three sub-counties in Uganda. Environmental variables were extracted from remote sensing sources and averaged over different time periods. General linear mixed models were constructed for each sub-counties based on a log-binomial distribution. The influence of IRS was analysed by comparing marginal effects of environment in models adjusted and unadjusted for IRS. Great regional variability in the shape (linear and non-linear), direction, and magnitude of environmental associations with malaria risk were observed between sub-counties. IRS was significantly associated with malaria risk reduction (risk ratios vary from RR = 0.03, CI 95% [0.03–0.08] to RR = 0.35, CI95% [0.28–0.42]). Model adjustment for this intervention changed the magnitude and/or direction of environment-malaria associations, suggesting an interaction effect. This study evaluated the potential influence of IRS in the malaria-environment association and highlighted the necessity to control for interventions when they are performed to properly estimate the environmental influence on malaria. Local models are more informative to guide intervention program compared to national models.
-
Polar lows (PLs), which are intense maritime polar mesoscale cyclones, are associated with severe weather conditions. Due to their small size and rapid development, PL forecasting remains a challenge. Convection-permitting models are adequate to forecast PLs since, compared to coarser models, they provide a better representation of convection as well as surface and near-surface processes. A PL that formed over the Norwegian Sea on 25 March 2019 was simulated using the convection-permitting Canadian Regional Climate Model version 6 (CRCM6/GEM4, using a grid mesh of 2.5 km) driven by the reanalysis ERA5. The objectives of this study were to quantify the impact of the initial conditions on the simulation of the PL, and to assess the skill of the CRCM6/GEM4 at reproducing the PL. The results show that the skill of the CRCM6/GEM4 at reproducing the PL strongly depends on the initial conditions. Although in all simulations the synoptic environment is favourable for PL development, with a strong low-level temperature gradient and an upper-level through, only the low-level atmospheric fields of three of the simulations lead to PL development through baroclinic instability. The two simulations that best captured the PL represent a PL deeper than the observed one, and they show higher temperature mean bias compared to the other simulations, indicating that the ocean surface fluxes may be too strong. In general, ERA5 has more skill than the simulations at reproducing the observed PL, but the CRCM6/GEM4 simulation with initialisation time closer to the genesis time of the PL reproduces quite well small scale features as low-level baroclinic instability during the PL development phase.
-
Polar lows (PLs) are maritime mesoscale cyclones associated with severe weather. They develop during marine cold air outbreaks near coastlines and the sea ice edge. Unfortunately, our knowledge about the mechanisms leading to PL development is still incomplete. This study aims to provide a detailed analysis of the development mechanisms of a PL that formed over the Norwegian Sea on 25 March 2019 using the output of a simulation with the sixth version of the Canadian Regional Climate Model (CRCM6/GEM4), a convection-permitting model. First, the life cycle of the PL is described and the vertical wind shear environment is analysed. Then, the horizontal wind divergence and the baroclinic conversion term are computed, and a surface pressure tendency equation is developed. In addition, the roles of atmospheric static stability, latent heat release, and surface heat and moisture fluxes are explored. The results show that the PL developed in a forward-shear environment and that moist baroclinic instability played a major role in its genesis and intensification. Baroclinic instability was initially only present at low levels of the atmosphere, but later extended upward until it reached the mid-troposphere. Whereas the latent heat of condensation and the surface heat fluxes also contributed to the development of the PL, convective available potential energy and barotropic conversion do not seem to have played a major role in its intensification. In conclusion, this study shows that a convection-permitting model simulation is a powerful tool to study the details of the structure of PLs, as well as their development mechanisms.