Votre recherche
Résultats 584 ressources
-
Despite investments in disaster resilience, flooding continues to disrupt healthcare systems, both by limiting access and through failures in the surrounding transportation network. Existing models for mitigation planning often overlook critical dynamics, such as traffic rerouting, particularly at the national scales necessary for effective planning. Here we present a scalable method to identify hospitals at risk of emergency response delays and service disruptions caused by flood-induced traffic impacts. Our approach integrates a regional flood model with a gravity-based traffic model to simulate traffic flow from open-source road data. Our findings reveal hidden risks for hospitals located far from flood zones, showing how flood-related road disruptions and traffic rerouting can reduce access to critical healthcare services. In particular, we found 75 (of 2,475) hospitals at risk of patient surges beyond their regular capacity, driven solely by flood-related traffic disruptions. Of these, a third are more than 10 km from the nearest inundation, suggesting these facilities may be unaware and thus under-prepared — risks that have, until now, remained hidden from assessments. © The Author(s) 2025.
-
Urban flooding frequently causes significant damage to infrastructure and facilities, leading to critical supply shortages in affected regions. Ensuring rapid and efficient distribution of relief supplies remains a key challenge during disaster response operations. This study proposes a two-stage optimization framework for emergency logistics. First, a supply distribution model is developed by integrating resource scarcity indices and disaster severity indices, optimized through a simulated annealing algorithm. Second, a vehicle routing model accounting for rainfall and dynamic vehicle speeds is established, solved using a hybrid Genetic Simulated Annealing algorithm to enhance computational efficiency. Ultimately, through simulation with randomly generated calculation examples, it was found that for the supply distribution model, the allocation model that takes into account both the resource scarcity index and the disaster index is more suitable for scenarios with an uneven distribution of disaster severity. The results of the model that takes into account the resource scarcity index, disaster index and waiting time index shows an improvement of 4% over the model that doesn’t consider the resource scarcity index. The experimental results show that the proposed methodology not only adapts to varying disaster spatial patterns but also balances efficiency and equity under supply constraints, offering a scalable tool for designing resilient urban flood response systems. © The Author(s) 2025.
-
Floods constitute the most significant natural hazard to societies worldwide. Population growth and unchecked development have led to floodplain encroachment. Modelling suggests that climate change will regionally intensify the threat posed by future floods, with more people in harm's way. From a global change perspective, past flood events and their spatial-temporal patterns are of particular interest because they can be linked to former climate patterns, which can be used to guide future climate predictions. Millennial and centennial time series contain evidence of very rare extreme events, which are often considered by society as ‘unprecedented’. By understanding their timing, magnitude and frequency in conjunction with prevailing climate regime, we can better forecast their future occurrence. This Virtual Special Issue (VSI) entitled Temporal and spatial patterns in Holocene floods under the influence of past global change, and their implications for forecasting “unpredecented” future events comprises 14 papers that focus on how centennial and millennia-scale natural and documentary flood archives help improve future flood science. Specifically, documentation of large and very rare flood episodes challenges society's lack of imagination regarding the scale of flood disasters that are possible (what we term here, the “unknown unknowns”). Temporal and spatial flood behaviour and related climate patterns as well as the reconstruction of flood propagation in river systems are important foci of this VSI. These reconstructions are crucial for the provision of robust and reliable data sets, knowledge and baseline information for future flood scenarios and forecasting. We argue that it remains difficult to establish analogies for understanding flood risk during the current period of global warming. Most studies in this VSI suggest that the most severe flooding occurred during relatively cool climate periods, such as the Little Ice Age. However, flood patterns have been significantly altered by land use and river management in many catchments and floodplains over the last two centuries, thereby obscuring the climate signal. When the largest floods in instrumental records are compared with paleoflood records reconstructed from natural and documentary archives, it becomes clear that precedent floods should have been considered in many cases of flood frequency analysis and flood risk modelling in hydraulic infrastructure. Finally, numerical geomorphological analysis and hydrological simulations show great potential for testing and improving our understanding of the processes and factors involved in the temporal and spatial behaviour of floods. © 2025 The Authors
-
Artificial flooding of rainwater is most common in urban areas due to various reasons, such as improper drainage systems, obstruction of natural drainage by building constructions, and encroachment of stormwater nallahs. Flash floods lead to significant losses, disrupt transportation, and cause inconvenience to the public. Udupi, characterized by its porous lateritic strata, undulating topography, and proximity to the sea, experiences artificial flooding during the peak monsoon season in its low-lying areas, primarily due to the overflow of the Indrani River, which is also a potential water resource for Udupi, Karnataka. Currently, the river faces significant challenges due to increasing anthropogenic activities. Revitalizing the Indrani River offers numerous benefits, including its potential use as a drinking water source during periods of water scarcity. This study aims to propose flood and stormwater management measures for the river catchment and to evaluate selected water quality parameters (pH, dissolved oxygen, and conductivity) at fifteen strategic locations along the river course. Higher conductivity observed at downstream stations is attributed to sewage discharge from urban settlements and a sewage treatment plant. The study suggests short-term measures such as targeted clean-up operations and stricter enforcement of pollution control regulations. Additionally, it recommends long-term strategies, including the development of a comprehensive river basin management plan, community engagement initiatives, and improvements to wastewater treatment infrastructure. To maintain the health of the Indrani River, this research emphasizes the importance of continuous monitoring and the implementation of integrated management practices. © The Author(s) 2025.
-
The non-aquatic fauna (e.g. insects, birds, mammals) that occupies seasonally flooded floodplain forests in the Amazon is a major component of the region’s biodiversity, and the responses portrayed to cope with this inundation are varied. However, no systematic review of these species, including specialist species (exclusive to this environment), and their responses to seasonal inundation has yet been performed. Here, we provide an up-to-date and thorough examination of research on non-aquatic fauna that utilize Amazonian floodplain forests and their responses to seasonal flooding. We conducted a survey of published and unpublished studies from 1853 to 2023 through the Web of Science and Google Scholar platforms. We found a total of 445 studies, including 11,513 species of non-aquatic animals that inhabit floodplain forests. We identified ten main types of responses to flooding, the three most common being vertical migration, occupation of floating substrates and eggs submerged in a dormant state. Results suggest great behavioral, morphological and physiological plasticity among non-aquatic species, including those that are not floodplain forest specialists. Several types of responses occur independently in widely distinct taxonomic groups, emphasizing convergent strategies to deal with seasonal flooding. Our findings underline the uniqueness of the floodplain fauna and its importance for the regional biodiversity conservation agenda. © The Author(s), under exclusive licence to Society of Wetland Scientists 2025.
-
Floods and droughts cause large economic and environmental impacts and incalculable human suffering. Despite growing evidence of important synergies in their management, floods and droughts tend to be mostly managed in silos. The synergistic management of flood and drought risk is limited by the inability of current governance systems to change at the scope, depth and speed required to address the emerging challenges of climate change induced hydroclimatic risks. Building on the concept of continuous transformational change and combining key elements across sectoral governance frameworks, this paper proposes a transformative governance conceptual framework that enables national governments to work across silos in a whole of government approach to lead a whole of society effort to manage the whole hydroclimatic spectrum. Spain, a country with an advanced hydroclimatic risk management system, is presented as an illustrative example to explore the possible idiosyncrasies of implementing the proposed changes on the ground. © 2025 Núñez Sánchez et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
-
Floods are one of the most prevalent natural disasters, and advancements in geospatial technologies have revolutionized flood management, particularly the use of Digital Elevation Models (DEMs) in hydrological modelling. However, a comprehensive analysis DEMs integration in flood risk management is lacking. This study addresses this gap through a thorough Systematic Literature Review focusing on the combined application of DEMs and hydrological models in flood mitigation and risk management. The SLR scrutinized 21 articles, revealing eight key themes: DEM data sources and characteristics, DEM integration with hydrological models, flood hazard mapping applications, terrain impact assessment, model performance evaluation, machine learning in flood management, ecosystem services and resilience, and policy and governance implications. These findings emphasize the importance of precise DEM selection and correction for successful flood modelling, highlighting Advanced Land Observing Satellite as the most effective freely available DEM for use with the HEC-RAS unsteady flood model. This integration significantly enhances flood mitigation efforts and strengthens management strategies. Finally, this study underscores the pivotal role of DEM integration in crafting effective flood mitigation strategies, especially in addressing climate change challenges and bolstering community and ecosystem resilience. © 2025 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
-
The Internet of Things (IoT) has become increasingly important in flood risk management (FRM). This trend emerged as climate change intensified flooding events, driving the urgent need for localised early warning systems. Previous studies demonstrated the effectiveness of IoT sensors in forecasting potential floods and supporting flood modelling. However, comprehensive research addressing all FRM stages - prevention, mitigation, preparedness, response, and recovery - has remained limited. To address this research gap, this study identified five key IoT sensor categories: water quantity, water quality, rainfall intensity, weather conditions, and catchment characteristics. The roles, objectives, and applications of these sensors across FRM stages were then investigated. Results showed that water quantity sensors were the most common, accounting for 48% of documented IoT applications. Weather condition sensors (27%) and rainfall intensity sensors (21%) were also widely used, especially after 2021. Additionally, IoT-based FRM had three primary Objectives flood modelling (61%), alerting (25%), and visualisation (14%). Most cases (42%) focused on the preparedness stage, while prevention (8%) and recovery (5%) were underrepresented, highlighting clear gaps in existing research. The review also revealed several overlooked sensor types, including groundwater level, biochemical oxygen demand, and nitrite sensors. Despite their potential to enhance quality-based flood modelling, these sensors were rarely utilised. Consequently, the study emphasised the need for broader integration of IoT sensors throughout all FRM stages. Such integration could support more resilient, data-driven flood management strategies, particularly in regions where IoT deployment has remained limited. © The Author(s), under exclusive licence to Springer Nature B.V. 2025.
-
This study introduces a novel methodology for assessing ice-jam flood hazards along river channels. It employs empirical equations that relate non-dimensional ice-jam stage to discharge, enabling the generation of an ensemble of longitudinal profiles of ice-jam backwater levels through Monte-Carlo simulations. These simulations produce non-exceedance probability profiles, which indicate the likelihood of various flood levels occurring due to ice jams. The flood levels associated with specific return periods were validated using historical gauge records. The empirical equations require input parameters such as channel width, slope, and thalweg elevation, which were obtained from bathymetric surveys. This approach is applied to assess ice-jam flood hazards by extrapolating data from a gauged reach at Fort Simpson to an ungauged reach at Jean Marie River along the Mackenzie River in Canada’s Northwest Territories. The analysis further suggests that climate change is likely to increase the severity of ice-jam flood hazards in both reaches by the end of the century. This methodology is applicable to other cold-region rivers in Canada and northern Europe, provided similar fluvial geomorphological and hydro-meteorological data are available, making it a valuable tool for ice-jam flood risk assessment in other ungauged areas. © 2025 by the authors.
-
Monitoring changes in climatic extremes is vital, as they influence current and future climate while significantly impacting ecosystems and society. This study examines trends in extreme precipitation indices over an Indian tropical river basin, analyzing and ranking 28 Coupled Model Intercomparison Project Phase 6 (CMIP6) Global Climate Models (GCMs) based on their performance against India Meteorological Department (IMD) data. The top five performing GCMs were selected to construct multi-model ensembles (MMEs) using Machine Learning (ML) algorithms, Random Forest (RF), Support Vector Machine (SVM), Multiple Linear Regression (MLR), and the Arithmetic Mean. Statistical metrics reveal that the application of an RF model for ensembling performs better than other models. The analysis focused on six IMD-convention indices and eight indices recommended by the Expert Team on Climate Change Detection and Indices (ETCCDI). Future projections were examined for three timeframes: near future (2025–2050), mid-future (2051–2075), and far future (2076–2100) for SSP245 and SSP585 scenarios. Statistical trend analysis, the Mann-Kendall test, Sen’s Slope estimator, and Innovative Trend Analysis (ITA), were applied to the MME to assess variability and detect changes in extreme precipitation trends. Compared to SSP245, in the SSP585 scenario, Total Precipitation (PRCPTOT) shows a significant decreasing trend in the near future, mid-future, and far future and Moderate Rain (MR) shows a decreasing trend in the near future and far future of monsoon season. The findings reveal significant future trends in extreme precipitation, impacting Sustainable Development Goals (SDGs) achievement and providing crucial insights for sustainable water resource management and policy planning in the Kali River basin. © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025.
-
African hydrological systems are incredibly complex and highly sensitive to climate variability. This review synthesizes observational data, remote sensing, and climate modeling to understand the interactions between fluvial processes, water cycle dynamics, and anthropogenic pressures. Currently, these systems are experiencing accelerating warming (+0.3 °C/decade), leading to more intense hydrological extremes and regionally varied responses. For example, East Africa has shown reversed temperature–moisture correlations since the Holocene onset, while West African rivers demonstrate nonlinear runoff sensitivity (a threefold reduction per unit decline in rainfall). Land-use and land-cover changes (LULCC) are as impactful as climate change, with analysis from 1959–2014 revealing extensive conversion of primary non-forest land and a more than sixfold increase in the intensity of pastureland expansion by the early 21st century. Future projections, exemplified by studies in basins like Ethiopia’s Gilgel Gibe and Ghana’s Vea, indicate escalating aridity with significant reductions in surface runoff and groundwater recharge, increasing aquifer stress. These findings underscore the need for integrated adaptation strategies that leverage remote sensing, nature-based solutions, and transboundary governance to build resilient water futures across Africa’s diverse basins.
-
Cotton (Gossypium spp.) is an important industrial crop, but it is vulnerable to waterlogging stress. The relationship between cotton yields and waterlogging indicators (CY-WI) is fundamental for waterlogging disaster reduction. This review systematically summarized and analyzed literature containing CY-WI relations across 1970s–2020s. China conducted the most CY-WI experiments (67%), followed by Australia (17%). Recent decades (2010s, 2000s) contributed the highest proportion of CY-WI works (49%, 15%). Surface waterlogging form is mostly employed (74%) much more than sub-surface waterlogging. The flowering and boll-forming stage, followed by the budding stage, performed the most CY-WI experiments (55%), and they showed stronger negative relations of CY-WI than other stages. Some compound stresses enhance negative relations of CY-WI, such as accompanying high temperatures, low temperatures, and shade conditions, whereas some others weaken the negative CY-WI relations, such as prior/post drought and waterlogging. Anti-waterlogging applications significantly weaken negative CY-WI relations. Regional-scale CY-WI research is increasing now, and they verified the influence of compound stresses. In future CI-WI works, we should emphasize the influence of compound stresses, establish regional CY-WI relations regarding cotton growth features, examine more updated cotton cultivars, focus on initial and late cotton stages, and explore the consequence of high-deep submergence.
-
Nature-based solutions (NbS) are increasingly recognized as strategic alternatives and complements to grey infrastructure for addressing water-related challenges in the context of climate change, urbanization, and biodiversity decline. This article presents a critical, theory-informed review of the state of NbS implementation in European water management, drawing on a structured synthesis of empirical evidence from regional case studies and policy frameworks. The analysis found that while NbS are effective in reducing surface runoff, mitigating floods, and improving water quality under low- to moderate-intensity events, their performance remains uncertain under extreme climate scenarios. Key gaps identified include the lack of long-term monitoring data, limited assessment of NbS under future climate conditions, and weak integration into mainstream planning and financing systems. Existing evaluation frameworks are critiqued for treating NbS as static interventions, overlooking their ecological dynamics and temporal variability. In response, a dynamic, climate-resilient assessment model is proposed—grounded in systems thinking, backcasting, and participatory scenario planning—to evaluate NbS adaptively. Emerging innovations, such as hybrid green–grey infrastructure, adaptive governance models, and novel financing mechanisms, are highlighted as key enablers for scaling NbS. The article contributes to the scientific literature by bridging theoretical and empirical insights, offering region-specific findings and recommendations based on a comparative analysis across diverse European contexts. These findings provide conceptual and methodological tools to better design, evaluate, and scale NbS for transformative, equitable, and climate-resilient water governance.
-
Floods are natural hazards that have the greatest socioeconomic impact worldwide, given that 23% of the global population live in urban areas at risk of flooding. In this field of research, the analysis of flood risk has traditionally been studied based mainly on approaches specific to civil engineering such as hydraulics and hydrology. However, these patterns of approaching the problem in research seem to be changing in recent years. During the last few years, a growing trend has been observed towards the use of methodology-based approaches oriented towards urban planning and land use management. In this context, this study analyzes the evolution of these research patterns in the field by developing a bibliometric meta-analysis of 2694 scientific publications on this topic published in recent decades. Evaluating keyword co-occurrence using VOSviewer software version 1.6.20, we analyzed how phenomena such as climate change have modified the way of addressing the study of this problem, giving growing weight to the use of integrated approaches improving territorial planning or implementing adaptive strategies, as opposed to the more traditional vision of previous decades, which only focused on the construction of hydraulic infrastructures for flood control.
-
ABSTRACT Waterlogging is a critical abiotic stress factor severely affecting maize, one of the World's most widely cultivated cereal crops. Globally, maize is a crucial food crop, grown in diverse agro‐climatic zones, from subtropical to temperate climates. Waterlogging, resulting from flooding, intense rainfall and inefficient drainage systems, continues to be a major abiotic stress factor influencing crop productivity globally. Prolonged exposure to excess soil moisture leads to oxygen depletion in the root zone, resulting in restricted aerobic respiration, impaired nutrient uptake and disruption of physiological processes. This review aims to provide a comprehensive overview of the morphological, physiological and biochemical changes maize undergoes in response to waterlogging stress. Key aspects such as root system adaptation, reduction in photosynthetic efficiency, accumulation of reactive oxygen species (ROS) and hormonal imbalances are systematically examined. Furthermore, we delve into the metabolic shifts that enable maize to survive under anaerobic conditions, including alterations in energy metabolism, carbohydrate partitioning, and activating antioxidant defence mechanisms. The role of key signalling molecules such as ethylene is explored, highlighting their involvement in regulating stress responses. Additionally, the review discusses agronomic and genetic approaches for improving waterlogging tolerance in maize, including the development of stress‐resilient cultivars through breeding and biotechnological interventions. By synthesising recent advances in understanding maize's response to waterlogging, this paper identifies gaps and proposes future research directions, focusing on the integration of molecular and field‐based strategies. The insights from this review are crucial for developing sustainable agricultural practices aimed at mitigating the adverse impacts of waterlogging on maize productivity, particularly in flood‐prone areas. Breeding for waterlogging resilience integrates the creation of robust varieties, plant morphology optimisation, and utilisation of tolerant secondary traits through combined conventional and biotechnological breeding strategies.
-
During and after a disaster, selected services and systems are needed to recover and maintain important functions of society. These are deemed critical infrastructure (CI). When these services are disrupted due to the impacts of a disaster, response and recovery may be slowed or halted. As flooding events are occurring more often across larger geographic extents, advancing methods for assessing risks of flooding to CI is vital. We use Utah, USA as a case study to demonstrate a novel, transferable approach for assessing fine-scale flood risks to CI across large geographic areas. Specifically, our assessment approach integrates high-resolution building footprints of schools, first responder facilities, and hospitals, and flood risk maps from a state-of-the-art big data flood model and the U.S. Federal Emergency Management Agency (FEMA). We show that 94 CI facilities across Utah are at risk of severe flooding, and that those risks to CI are almost entirely overlooked by FEMA flood risk maps. Though nearly every CI building is located outside of FEMA flood zones, FEMA maps inaccurately and incompletely represent flood risks, indicating that future flood risk assessment approaches should use flood risk maps from other sources. The approach we introduce can be used to assess flood risks to CI elsewhere, and case study results can be applied to inform flood risk reduction efforts in Utah. © 2025 Elsevier Ltd
-
An accurate study of extreme precipitation risk events is crucial for flood control, urban planning, and engineering design. The Copula function effectively handles uncertainties and nonlinear interactions among multiple hydrological variables, capturing complex correlations in extreme precipitation events for more precise risk assessments. Selecting the parameters of the Copula function is critical, as it defines the function’s shape and the dependence structure between variables, influencing its application. Traditional parameterization methods, like maximum likelihood estimation and least squares, often require large datasets and distribution assumptions, making them cumbersome for high-dimensional data. This research presents a model using an enhanced whale optimization algorithm to estimate Copula parameters (CLCWOA-Copula), aiming to assess return period (RP) and failure probability associated with extreme precipitation risk events. Monthly precipitation data from Zhengzhou, China, from 1950 to 2024 is analyzed, using the 90th percentile as the extreme precipitation threshold. Marginal distributions are fitted using the P-III and gamma distributions, etc., which are then combined using CLCWOA-Copula to analyze coincident RP, joint RP, Kendall RP, and failure probability under composite conditions. The results demonstrate that this optimization method possesses strong global search capabilities and parallel computing abilities, yielding optimal Copula parameter values within few iterations and selecting the best-fit Copula function based on AIC, R², and RMSE. The Kendall RP and failure probability offer more accurate tools for extreme precipitation risk analysis; when Pmax reaches 540 mm, P90 reaches 1080 mm, or R90 reaches 0.83, a one-in-a-century extreme precipitation event is indicated. This study provides important insights for risk metrics applicable to extreme weather. © The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2025.
-
Water management practices in rice paddies, particularly alternate wetting and drying and midseason drainage followed by intermittent irrigation, are widely recognized for reducing methane (CH4) emissions and irrigation water use compared to continuous flooding (CF). However, these practices also increase nitrous oxide (N2O) emissions and their effect on rice yield remains unclear, especially in the context of technology dissemination to farmers. This study (1) reviews 11 recent meta-analyses on CH4 and N2O emissions and rice yield and (2) synthesizes their reported effects on rice growth and yield. Aggregated data show that CH4 emissions decreased by 31–62% (n = 10), while N2O emissions increased by 37–445% (n = 7), relative to CF. Rice yield change ranged from − 5.4% to + 11% with a mean of + 1.3% (n = 8). The impact of water management on rice yield varied depending on the timing and intensity of drainage events, with excessive water stress—particularly during the heading stage—and prolonged reductive soil conditions being key risk factors. Results indicate that mild-intensity drainage practices, such as ‘safe AWD,’ not only avoid yield penalties but can significantly enhance rice productivity when tailored to favorable environmental and agronomic conditions. For effective dissemination of these practices, leveraging yield improvement as an incentive for farmers is essential. Optimizing drainage schedules in accordance with rice physiological stages and local conditions is critical. With appropriate localization, water management can serve as a climate-smart strategy that simultaneously improves water efficiency, reduces greenhouse gas emissions, and maintains or increases rice productivity. © The Author(s) 2025.
-
Flooding presents a significant challenge in the Lagos metropolis, driven by rapid urbanization, poor drainage infrastructure, and climate change. This study evaluates flood resilience strategies in Lagos, analyzing their effectiveness in mitigating flood risks and their alignment with the 2030 Agenda. The research utilizes the PICO (Population, Intervention, Control, and Outcomes) framework to refine research questions and follows PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) guidelines for study selection, search strategies, and data extraction. A thorough search across databases such as Google Scholar, SCOPUS, and government data repositories was conducted to ensure the inclusion of relevant studies while minimizing selection bias. The study emphasizes the severe impacts of flooding, referencing the 2022–2023 flood event which resulted in USD 262,500 damages and displaced 8000 residents in Lagos State. Current flood resilience strategies are inadequate to meet the Sustainable Development Goals (SDGs) due to insufficient urban flood infrastructure, poor waste disposal practices, and worsening climatic conditions. The livelihoods, income, health, and overall survival of vulnerable communities are at significant risk. Key gaps identified include the weak enforcement of urban planning regulations, limited community engagement, ineffective early warning systems, and poor intervention initiatives. This study suggests a multi-stakeholder approach that enhances both structural and non-structural flood resilience. Improving drainage systems, promoting sustainable waste management, improving climate adaptation policies, and fostering community-based flood mitigation strategies are crucial for achieving long-term urban resilience. These findings offer valuable insights for policymakers, urban planners, and climate resilience advocates working toward the Sustainable Development Agenda in Lagos metropolis. Copyright © 2025 Orimoogunje and Aniramu.
-
Extreme weather events, such as heat waves, heavy rainfall and droughts, have become more frequent and intense in Brazil. According to climate change scenarios, this trend, which has a negative impact on people’s health and living conditions, will continue. Here, we analysed indicators for extreme weather events resulting from climate change, projected for the 21st century, alongside socio-demographic indicators for Brazilian municipalities, in an attempt to identify populations exposed to the risks of the climate crisis. We calculated the values of indicators for extreme air temperature and precipitation events, based on NEX-GDDP-CMIP6 data, for a reference period and for the future, as well as socio-demographic indicators based on recent census data. Using Spearman’s coefficient, we then calculated anomaly indicators for the future time intervals and analysed correlations with the socio-demographic indicators. Our results indicate a reduction in cold days and an increase in hot days and heat waves in both scenarios (SSP2-4.5 and SSP5-8.5), with the most changes occurring in the highest emission scenario. The extreme precipitation indicators suggest both an increase and a reduction in intense precipitation and droughts in a number of the country’s regions. The projected changes are more intense in the highest emission scenario, and in the North and Northeast regions. We noted a trend for greatest occurrence of extreme events in locations with a higher proportion of Black, Parda/Brown, Indigenous and Quilombola populations, and the socially vulnerable. We recommend that policies to adapt and mitigate the impacts of climate change focus on reducing inequalities and promoting climate justice. © The Author(s) 2025.