Votre recherche
Résultats 1 120 ressources
-
The KnnCAD Version 4 weather generator algorithm for nonparametric, multisite simulations of temperature and precipitation data is presented. The K-nearest neighbor weather generator essentially reshuffles the historical data, with replacement. In KnnCAD Version 4, a block resampling scheme is introduced to preserve the temporal correlation structure in temperature data. Perturbation of the reshuffled variable data is also added to enhance the generation of extreme values. The Upper Thames River Basin in Ontario, Canada isused as a case study and the model is shown to simulate effectively the historical characteristics at the site. The KnnCAD Version 4 approach is shown to improve on the previous versions of the model and offers a major advantage over many parametric and semiparametric weather generators in that multisite use can be easily achieved without making statistical assumptions dealing with the spatial correlations and probability distributions of each variable.
-
Changes in society's vulnerability to natural hazards are important to understand, as they determine current and future risks, and the need to improve protection. Very large impacts including high numbers of fatalities occur due to single storm surge flood events. Here, we report on impacts of global coastal storm surge events since the year 1900, based on a compilation of events and data on loss of life. We find that over the past, more than eight thousand people are killed and 1.5 million people are affected annually by storm surges. The occurrence of very substantial loss of life (g10000 persons) from single events has however decreased over time. Moreover, there is a consistent decrease in event mortality, measured by the fraction of exposed people that are killed, for all global regions, except South East Asia. Average mortality for storm surges is slightly higher than for river floods, but lower than for flash floods. We also find that for the same coastal surge water level, mortality has decreased over time. This indicates that risk reduction efforts have been successful, but need to be continued with projected climate change, increased rates of sea-level rise and urbanisation in coastal zones.
-
Recent research has extended conventional hydrological algorithms into a hexagonal grid and noted that hydrological modeling on a hexagonal mesh grid outperformed that on a rectangular grid. Among the hydrological products, flow routing grids are the base of many other hydrological simulations, such as flow accumulation, watershed delineation, and stream networks. However, most of the previous research adopted the D6 algorithm, which is analogous to the D8 algorithm over a rectangular grid, to produce flow routing. This paper explored another four methods regarding generating flow directions in a hexagonal grid, based on four algorithms of slope aspect computation. We also developed and visualized hexagonal-grid-based hydrological operations, including flow accumulation, watershed delineation, and hydrological indices computation. Experiments were carried out across multiple grid resolutions with various terrain roughness. The results showed that flow direction can vary among different approaches, and the impact of such variation can propagate to flow accumulation, watershed delineation, and hydrological indices production, which was reflected by the cell-wise comparison and visualization. This research is practical for hydrological analysis in hexagonal, hierarchical grids, such as Discrete Global Grid Systems, and the developed operations can be used in flood modeling in the real world.
-
As Hurricane Katrina revealed, coastal communities have become far more vulnerable to tropical storms and the long-term displacement of residents. Yet, because the emergency management model presumes that recovery quickly follows response, governments focus only on short-term, localized displacement. However, long-term and long-distance displacement exposes a gray area between immediate shelter and permanent housing, along with concerns about vulnerability, housing availability, and land development. We begin this article by discussing the transition between response and recovery. We then review literature regarding social vulnerability, displacement, provision of temporary housing, households' return decisions, and disaster-driven land development and housing construction processes. We close with thoughts on future research to increase planners' understanding of the issues involved and to help them craft effective policies.
-
Abstract. Model intercomparison studies are carried out to test and compare the simulated outputs of various model setups over the same study domain. The Great Lakes region is such a domain of high public interest as it not only resembles a challenging region to model with its transboundary location, strong lake effects, and regions of strong human impact but is also one of the most densely populated areas in the USA and Canada. This study brought together a wide range of researchers setting up their models of choice in a highly standardized experimental setup using the same geophysical datasets, forcings, common routing product, and locations of performance evaluation across the 1×106 km2 study domain. The study comprises 13 models covering a wide range of model types from machine-learning-based, basin-wise, subbasin-based, and gridded models that are either locally or globally calibrated or calibrated for one of each of the six predefined regions of the watershed. Unlike most hydrologically focused model intercomparisons, this study not only compares models regarding their capability to simulate streamflow (Q) but also evaluates the quality of simulated actual evapotranspiration (AET), surface soil moisture (SSM), and snow water equivalent (SWE). The latter three outputs are compared against gridded reference datasets. The comparisons are performed in two ways – either by aggregating model outputs and the reference to basin level or by regridding all model outputs to the reference grid and comparing the model simulations at each grid-cell. The main results of this study are as follows: The comparison of models regarding streamflow reveals the superior quality of the machine-learning-based model in the performance of all experiments; even for the most challenging spatiotemporal validation, the machine learning (ML) model outperforms any other physically based model. While the locally calibrated models lead to good performance in calibration and temporal validation (even outperforming several regionally calibrated models), they lose performance when they are transferred to locations that the model has not been calibrated on. This is likely to be improved with more advanced strategies to transfer these models in space. The regionally calibrated models – while losing less performance in spatial and spatiotemporal validation than locally calibrated models – exhibit low performances in highly regulated and urban areas and agricultural regions in the USA. Comparisons of additional model outputs (AET, SSM, and SWE) against gridded reference datasets show that aggregating model outputs and the reference dataset to the basin scale can lead to different conclusions than a comparison at the native grid scale. The latter is deemed preferable, especially for variables with large spatial variability such as SWE. A multi-objective-based analysis of the model performances across all variables (Q, AET, SSM, and SWE) reveals overall well-performing locally calibrated models (i.e., HYMOD2-lumped) and regionally calibrated models (i.e., MESH-SVS-Raven and GEM-Hydro-Watroute) due to varying reasons. The machine-learning-based model was not included here as it is not set up to simulate AET, SSM, and SWE. All basin-aggregated model outputs and observations for the model variables evaluated in this study are available on an interactive website that enables users to visualize results and download the data and model outputs.
-
Abstract Streamflow sensitivity to different hydrologic processes varies in both space and time. This sensitivity is traditionally evaluated for the parameters specific to a given hydrologic model simulating streamflow. In this study, we apply a novel analysis over more than 3000 basins across North America considering a blended hydrologic model structure, which includes not only parametric, but also structural uncertainties. This enables seamless quantification of model process sensitivities and parameter sensitivities across a continuous set of models. It also leads to high-level conclusions about the importance of water cycle components on streamflow predictions, such as quickflow being the most sensitive process for streamflow simulations across the North American continent. The results of the 3000 basins are used to derive an approximation of sensitivities based on physiographic and climatologic data without the need to perform expensive sensitivity analyses. Detailed spatio-temporal inputs and results are shared through an interactive website.
-
Phosphorus (P) loss in agricultural discharge has typically been associated with surface runoff; however, tile drains have been identified as a key P pathway due to preferential transport. Identifying when and where these pathways are active may establish high‐risk periods and regions that are vulnerable for P loss. A synthesis of high‐frequency, runoff data from eight cropped fields across the Great Lakes region of North America over a 3‐yr period showed that both surface and tile flow occurred year‐round, although tile flow occurred more frequently. The relative timing of surface and tile flow activation was classified into four response types to infer runoff‐generation processes. Response types were found to vary with season and soil texture. In most events across all sites, tile responses preceded surface flow, whereas the occurrence of surface flow prior to tile flow was uncommon. The simultaneous activation of pathways, indicating rapid connectivity through the vadose zone, was seldom observed at the loam sites but occurred at clay sites during spring and summer. Surface flow at the loam sites was often generated as saturation‐excess, a phenomenon rarely observed on the clay sites. Contrary to expectations, significant differences in P loads in tiles were not apparent under the different response types. This may be due to the frequency of the water quality sampling or may indicate that factors other than surface‐tile hydrologic connectivity drive tile P concentrations. This work provides new insight into spatial and temporal differences in runoff mechanisms in tile‐drained landscapes. Core Ideas Activation of surface runoff and tile flow differ with soil texture and season. Timing of flow path activation was used to infer hydrological processes. Connectivity between the surface and tiles exists on clay soil during growing season. Rapid connectivity between the surface and tiles occurs less frequently on loam.
-
Abstract A warmer climate impacts streamflows and these changes need to be quantified to assess future risk, vulnerability, and to implement efficient adaptation measures. The climate simulations from the fifth phase of the Coupled Model Intercomparison Project (CMIP5), which have been the basis of most such assessments over the past decade, are being gradually superseded by the more recent Coupled Model Intercomparison Project Phase 6 (CMIP6). Our study portrays the added value of the CMIP6 ensemble over CMIP5 in a first North America wide comparison using 3,107 catchments. Results show a reduced spread of the CMIP6 ensemble compared to the CMIP5 ensemble for temperature and precipitation projections. In terms of flow indicators, the CMIP6 driven hydrological projections result in a smaller spread of future mean and high flow values, except for mountainous areas. Overall, we assess that the CMIP6 ensemble provides a narrower band of uncertainty of future climate projections, bringing more confidence for hydrological impact studies. , Plain Language Summary Greenhouse gas emissions are causing the climate to warm significantly, which in turn impacts flows in rivers worldwide. To adapt to these changes, it is essential to quantify them and assess future risk and vulnerability. Climate models are the primary tools used to achieve this. The main data set that provides scientists with state‐of‐the‐art climate model simulations is known as the Coupled Model Intercomparison Project (CMIP). The fifth phase of that project (CMIP5) has been used over the past decade in multiple hydrological studies to assess the impacts of climate change on streamflow. The more recent sixth phase (CMIP6) has started to generate projections, which brings the following question: is it necessary to update the hydrological impact studies performed using CMIP5 with the new CMIP6 models? To answer this question, a comparison between CMIP5 and CMIP6 using 3,107 catchments over North America was conducted. Results show that there is less spread in temperature and precipitation projections for CMIP6. This translates into a smaller spread of future mean, high and low flow values, except for mountainous areas. Overall, we assess that using the CMIP6 data set would provide a more concerted range of future climate projections, leading to more confident hydrological impact studies. , Key Points A comparison of hydrological impacts using Coupled Model Intercomparison Project version 5 (CMIP5) and Coupled Model Intercomparison Project Phase 6 (CMIP6) ensembles is performed over 3,107 catchments in North America The CMIP6 ensembles provide a narrower band of uncertainty for hydrological indicators in the future It is recommended to update hydrological impact studies performed using CMIP5 with the CMIP6 ensemble
-
Climate change has a significant influence on streamflow variation. The aim of this study is to quantify different sources of uncertainties in future streamflow projections due to climate change. For this purpose, 4 global climate models, 3 greenhouse gas emission scenarios (representative concentration pathways), 6 downscaling models, and a hydrologic model (UBCWM) are used. The assessment work is conducted for 2 different future time periods (2036 to 2065 and 2066 to 2095). Generalized extreme value distribution is used for the analysis of the flow frequency. Strathcona dam in the Campbell River basin, British Columbia, Canada, is used as a case study. The results show that the downscaling models contribute the highest amount of uncertainty to future streamflow predictions when compared to the contributions by global climate models or representative concentration pathways. It is also observed that the summer flows into Strathcona dam will decrease, and winter flows will increase in both future time periods. In addition to these, the flow magnitude becomes more uncertain for higher return periods in the Campbell River system under climate change.
-
La modélisation numérique des estuaires hypertidaux intéresse particulièrement les ingénieurs impliqués dans la navigation maritime et le développement de projets d'énergie marémotrice. Au Québec (Canada), la majorité de ces estuaires à marée extrême sont situés dans des régions isolée de l'Arctique canadien et sont souvent des lieux de résidence des communautés autochtones du Nord canadien. La présente thèse vise à mieux comprendre les processus se manifestent dans ces environnements, avec une emphase particulière sur l'importance (1) de la forte dominance des marées, (2) de l'extrême variabilité bathymétrique et (3) de l'immense forçage climatique. La thèse tente de démontrer comment les modèles numériques peuvent être utilisés pour traiter ces particularités et peuvent être la meilleure méthode disponible pour étudier leurs effets dans des environnements éloignés peu étudies. Premièrement, dans le but d'évaluer le potentiel de courant de marée en eau libre (sans glace) de l'estuaire hypertidal de la rivière Koksoak (KRE), nous avons modélisé le débit de marée en utilisant un model numérique hydrodynamique réputé (Delft3D). Différents aspects de l'hydrodynamique côtière ont été étudiés grâce à la modélisation numérique 1D2D-3D. La variabilité spatio-temporelle de la densité de puissance hydrocinétique disponible a ensuite été quantifiée. Les résultats ont révélé l'énorme potentiel (1000 MW) d'énergie marémotrice présente à plusieurs endroits le long de l'estuaire, ce qui nécessite des études numériques plus approfondies. En mettant davantage l'accent sur la modélisation numérique du site, par exemple la publication d'un Atlas des courants de marée pour aider à la navigation maritime dans le KRE, nous avons constaté que certains problèmes de modélisation des estuaires n'étaient pas abordés. Compte tenu des conditions limites précises et des mesures in situ recueillies au cours de l'hiver 2017-2018, nous avons constaté que les meilleurs résultats pour l'étalonnage du modèle (niveau d'eau) en utilisant les paramètres/options disponibles conduisaient encore à certains ordres d'imprécision. sur les conditions aux limites de formse qualité (campagnes 2017-2018) qui ont effectivement amélioré les résultats numériques, nous avons constaté que les meilleurs résultats pour l'étalonnage du modèle (niveau d'eau) en utilisant les paramètres/options disponibles étaient encore associés à certains ordres d'imprécision. Par conséquent, l'objectif du deuxième travail était d'améliorer l'efficacité de la modélisation hydrodynamique pour les environnements de marée peu profonde. Nous avons introduit quelques hypothèses décrivant pourquoi les modèles de turbulence et de rugosité disponibles ne sont pas bien adaptés à la modélisation des estuaires avec de fortes variabilités spatiales et temporelles des profondeurs de marée. En conséquence (i) un modèle de turbulence k-ε étendu pour la paramétrisation adaptative de la viscosité turbulente en fonction de la profondeur, et une approche basée sur la direction de l'écoulement pour la paramétrisation de la rugosité du lit ont été développés, incorporés dans le modèle hydrodynamique employé (Delft3D). Le modèle modifié a montré une amélioration constante des prévisions du modèle dans les stations de champ proche et de champ lointain, par rapport aux schémas de paramétrage classiques. Enfin, un aspect manquant et mal compris des estuaires de latitude nordique est l'immense impact de l'hiver sur le flux des marées. Situé à la latitude 58°, le KRE subit l'effet intensif du climat arctique pendant la majeure partie de l'année, ce qui entraîne la formation de glace estuarienne rapide sur une grande partie de sa longueur. Plus précisément, et ce qui est le plus pertinent pour cette recherche, il est important de savoir comment le long hiver affecte les potentiels hydrocinétiques des estuaires des régions froides. Ainsi, la surfusion entraîne la formation de frasil et de glace de fond qui peuvent adhérer aux pales des turbines et provoquer leur dysfonctionnement. Dans les estuaires, la surfusion a une nature transitoire complexe car le point de congélation de l'eau salée est une fonction de la salinité et de la profondeur qui est changée par les marées au cours des cycles de marée. En raison du manque de données de terrain en hiver, nous avons collecté des paramètres hydrodynamiques en utilisant de nouvelles campagne de mesures en hiver 2018. Les observations ont montré que le risque de surfusion diminue à l'intérieur de l'estuaire, car en l'absence de débit fluvial, la salinité peut s'infiltrer beaucoup plus loin dans le fleuve. À l'intérieur, une modulation apparente de ∆T (la différence entre la température de l'eau et la température de congélation de l'eau), dépendant de la marée, a été observée avec une augmentation de la température pendant des marées montantes. Cette augmentation retarderait la surfusion, ce qui est un avantage majeur pour turbines. En réglant le module Delft3D-Ice, différents scénarios ont été définis pour l'étendue et l'épaisseur de la couvert de glace, et leurs réponses hydrodynamiques ont été analysées. Il a été démontré que la glace a des impacts complexes et non uniformes sur les caractéristiques hydrodynamiques de la KRE. Surtout, le débit des prismes de marée, qui est la principale source d'élan, peut être modifiée de manière démonstrative par la couverture de glace et la glace de marée plate. Les résultats suggèrent que les zones énergétiques sont légèrement affectées par la glace pendant la plus grande partie de l'hiver. Pendant l'hiver de pointe seulement, la glace pourrait considérablement diminuer densité moyenne de puissance des courants (par exemple, la puissance moyenne est égale ou supérieure à 7 kW m-2). Ces implications cryohydrodynamiques indiquent que l'hiver arctique n'est pas un obstacle à la production d'électricité dans le fleuve Koksoak, et l'énergie marémotrice serait un avantage annuel pour Kuujjuaq
-
Hydrological systems are naturally complex and nonlinear. A large number of variables, many of which not yet well considered in regional frequency analysis (RFA), have a significant impact on hydrological dynamics and consequently on flood quantile estimates. Despite the increasing number of statistical tools used to estimate flood quantiles at ungauged sites, little attention has been dedicated to the development of new regional estimation (RE) models accounting for both nonlinear links and interactions between hydrological and physio-meteorological variables. The aim of this paper is to simultaneously take into account nonlinearity and interactions between variables by introducing the multivariate adaptive regression splines (MARS) approach in RFA. The predictive performances of MARS are compared with those obtained by one of the most robust RE models: the generalized additive model (GAM). Both approaches are applied to two datasets covering 151 hydrometric stations in the province of Quebec (Canada): a standard dataset (STA) containing commonly used variables and an extended dataset (EXTD) combining STA with additional variables dealing with drainage network characteristics. Results indicate that RE models using MARS with the EXTD outperform slightly RE models using GAM. Thus, MARS seems to allow for a better representation of the hydrological process and an increased predictive power in RFA.