Votre recherche
Résultats 1 010 ressources
-
The impact of climate change on the frequency distribution of spring floods in the Red River basin is investigated. Several major floods in the last couple of decades have caused major damages and inconvenience to people living in the Red River flood plain south of Winnipeg, and have raised the question of whether climate change is at least partly responsible for what appears to be more frequent occurrences of high spring runoff. To investigate whether this is the case, a regression model is used to associate spring peak flow at the US–Canada border with predictor variables that include antecedent precipitation in the previous fall (used as a proxy for soil moisture at freeze-up), winter snow accumulation and spring precipitation. Data from the Coupled Model Intercomparison Project – Phase 5 (CMIP5) are used to derive information about possible changes to the predictor variables in the future, and this information is then used to derive flood distributions for future climate conditions. While mean monthly...
-
In late June 2013, heavy rainfall and rapidly melting alpine snow triggered flooding throughout much of the southern half of Alberta. Heavy rainfall commenced on 19 June and continued for 3 days. When the event was over, more than 200 mm and as much as 350 mm of precipitation had fallen over the Front Ranges of the Canadian Rocky Mountains. Tributaries to the Bow River including the Ghost, Kananaskis, Elbow, Sheep and Highwood, and many of their tributaries, all reached flood levels. The storm had a large spatial extent causing flooding to the north and south in the Red Deer and Oldman Basins, and also to the west in the Elk River in British Columbia. Convergence of the nearly synchronous floodwaters downstream in the South Saskatchewan River system caused record high releases from Lake Diefenbaker through Gardiner Dam. Dam releases in Alberta and Saskatchewan attenuated the downstream flood peak such that only moderate flooding occurred in Saskatchewan and Manitoba. More than a dozen municipalities decla...
-
Abstract In flood frequency analysis (FFA), annual maximum (AM) model is widely adopted in practice due to its straightforward sampling process. However, AM model has been criticized for its limited flexibility. FFA using peaks-over-threshold (POT) model is an alternative to AM model, which offers several theoretical advantages; however, this model is currently underemployed internationally. This study aims to bridge the current knowledge gap by conducting a scoping review covering several aspects of the POT approach including model assumptions, independence criteria, threshold selection, parameter estimation, probability distribution, regionalization and stationarity. We have reviewed the previously published articles on POT model to investigate: (a) possible reasons for underemployment of the POT model in FFA; and (b) challenges in applying the POT model. It is highlighted that the POT model offers a greater flexibility compared to the AM model due to the nature of sampling process associated with the POT model. The POT is more capable of providing less biased flood estimates for frequent floods. The underemployment of POT model in FFA is mainly due to the complexity in selecting a threshold (e.g., physical threshold to satisfy independence criteria and statistical threshold for Generalized Pareto distribution – the most commonly applied distribution in POT modelling). It is also found that the uncertainty due to individual variable and combined effects of the variables are not well assessed in previous research, and there is a lack of established guideline to apply POT model in FFA.
-
In Canada, climate change is expected to increase the extreme precipitation events by magnitude and frequency, leading to more intense and frequent river flooding. In this study, we attempt to map the flood hazard and damage under projected climate scenarios (2050 and 2080). The study was performed in the two most populated municipalities of the Petite Nation River Watershed, located in southern Quebec (Canada). The methodology follows a modelling approach, in which climate projections are derived from the Hydroclimatic Atlas of Southern Quebec following two representative concentration pathways (RCPs) scenarios, i.e., RCP 4.5 and RCP 8.5. These projections are used to predict future river flows. A frequency analysis was carried out with historical data of the peak flow (period 1969–2018) to derive different return periods (2, 20, and 100 years), which were then fed into the GARI tool (Gestion et Analyse du Risque d’Inondation). This tool is used to simulate flood hazard maps and to quantify future flood risk changes. Projected flood hazard (extent and depth) and damage maps were produced for the two municipalities under current and for future scenarios. The results indicate that the flood frequencies are expected to show a minor decrease in peak flows in the basin at the time horizons, 2050 and 2080. In addition, the depth and inundation areas will not significantly change for two time horizons, but instead show a minor decrease. Similarly, the projected flood damage changes in monetary losses are projected to decrease in the future. The results of this study allow one to identify present and future flood hazards and vulnerabilities, and should help decision-makers and the public to better understand the significance of climate change on flood risk in the Petite Nation River watershed.
-
Abstract Flood risk may differ across income levels. In this paper, I employ unique survey data from more than 8000 households in Germany to derive an integrated flood risk indicator that accounts for local flood exposure, assets-at-risk, housing characteristics, and household coping behavior. The results suggest that low-income households, due to their smaller homes and less valuable assets, face lower monetary flood risks than wealthier households despite the former’s limited capacity to implement protection measures and purchase insurance. Relative to the available financial budget, however, expected flood damage weighs higher for low-income households.
-
Objectives. To understand changes in behavioral health services utilization and expenditures before and after natural disaster with an adult Medicaid population affected by the Baton Rouge, Louisiana–area flood (August 2016). Methods. We examined de-identified behavioral health claims data for Medicaid-insured adults in the affected region for 10 months before and after flooding (October 2015–June 2017). This constituted 273 233 provider claims for 22 196 individuals. Claims data included patient gender, behavioral health diagnoses, treatment dates, and costs. We made adjustments for Medicaid expansion by using monthly enrollment data. Results. Overall, most male patient behavioral health care visits were for substance use disorders (33.6%) and most female patient behavioral health care visits were for depression-related disorders (30%). Both diagnostic categories increased after the flood by 66% and 44%, respectively. Expansion accounted for a 4% increase in claims. Postflood claims reflected 8% to 10% higher costs. Conclusions. Greater amounts of behavioral health care services were sought in all 10 months of the postflood study period. We observed gender differences in use of services and diagnoses. Behavioral health care services following natural disasters must be extended longer than traditionally expected, with consideration for specific population needs.
-
The threat of flooding poses a considerable challenge for justice. Not only are more citizens becoming exposed to risk, but they are expected to play increasingly active roles in flood risk management. However, until recently, few efforts have charted broader understandings of disadvantage relating to flood risk exposure. Drawing upon social science scholarship that has long been sensitive to concerns related to justice, we deploy and develop the notion of flood disadvantage as a means to assess the challenges to more ‘just’ flood risk management. We contend that the concept of flood disadvantage offers a useful lens to appreciate the constraints of technical approaches to flood risk management, in particular, its limited ability to incorporate complex social elements such as how individuals have differing vulnerabilities and sensitivities to flooding and uneven abilities to engage with risk agendas. The notion highlights the compounding interactions between flooding and other social disadvantages across multiple public policy areas and scales. We argue a fuller acknowledgement of the socio-spatial-temporal dimensions of intersecting disadvantages can help sensitise technical risk analyses that tend to see people and communities as homogeneous entities in a given spatiality. In doing so we can better reveal why some individuals or communities are more vulnerable to disasters or are slower to recover than others. Finally, we outline the challenges in turning more ‘just’ flood risk management from an abstract notion into one that could inform future practice.
-
Abstract Flooding remains a major problem for the United States, causing numerous deaths and damaging countless properties. To reduce the impact of flooding on communities, the U.S. government established the Community Rating System (CRS) in 1990 to reduce flood damages by incentivizing communities to engage in flood risk management initiatives that surpass those required by the National Flood Insurance Program. In return, communities enjoy discounted flood insurance premiums. Despite the fact that the CRS raises concerns about the potential for unevenly distributed impacts across different income groups, no study has examined the equity implications of the CRS. This study thus investigates the possibility of unintended consequences of the CRS by answering the question: What is the effect of the CRS on poverty and income inequality? Understanding the impacts of the CRS on poverty and income inequality is useful in fully assessing the unintended consequences of the CRS. The study estimates four fixed‐effects regression models using a panel data set of neighborhood‐level observations from 1970 to 2010. The results indicate that median incomes are lower in CRS communities, but rise in floodplains. Also, the CRS attracts poor residents, but relocates them away from floodplains. Additionally, the CRS attracts top earners, including in floodplains. Finally, the CRS encourages income inequality, but discourages income inequality in floodplains. A better understanding of these unintended consequences of the CRS on poverty and income inequality can help to improve the design and performance of the CRS and, ultimately, increase community resilience to flood disasters.
-
Empirical evidence points out that urban form adaptation to climate-induced flooding events—through interventions in land uses and town plans (i. e., street networks, building footprints, and urban blocks)—might exacerbate vulnerabilities and exposures, engendering risk inequalities and climate injustice. We develop a multicriteria model that draws on distributive justice's interconnections with the risk drivers of social vulnerabilities, flood hazard exposures, and the adaptive capacity of urban form (through land uses and town plans). The model assesses “who” is unequally at-risk to flooding events, hence, should be prioritized in adaptation responses; “where” are the high-risk priority areas located; and “how” can urban form adaptive interventions advance climate justice in the priority areas. We test the model in Toronto, Ontario, Canada, where there are indications of increased rainfall events and disparities in social vulnerabilities. Our methodology started with surveying Toronto-based flooding experts who assigned weights to the risk drivers based on their importance. Using ArcGIS, we then mapped and overlayed the risk drivers' values in all the neighborhoods across the city based on the experts' assigned weights. Accordingly, we identified four high-risk tower communities with old infrastructure and vulnerable populations as the priority neighborhoods for adaptation interventions within the urban form. These four neighborhoods are typical of inner-city tower blocks built in the 20 th century across North America, Europe, and Asia based on modern architectural ideas. Considering the lifespan of these blocks, this study calls for future studies to investigate how these types of neighborhoods can be adapted to climate change to advance climate justice.
-
Data include sample replication (N) and flood-ring frequencies (F1, F2) derived from black ash (Fraxinus nigra Marsh.) trees growing in the floodplain of the Driftwood River in northwestern Ontario reported in "Flood ring production modulated by river regulation in eastern boreal Canada" published in "Frontiers in Plant Science - Quantitative Wood Anatomy to Explore Tree Responses to Global Change" by Nolin et al. in 2021c. DriftwoodFR.csv, as in Fig. 4, F1 and F2 flood-rings chronologies per sites and distance class with sample replication (N) to reproduce the flood-ring frequencies. Harricana River F1 and F2 flood ring chronologies from Nolin et al., 2021b are also provided. DriftwoodRW.csv, as in Fig. 5, the mean site chronologies of total ring width with sample replication (N). LAT_LON_Driftwood.kml, the coordinate data for each F. nigra stand sampled on the Driftwood River, including Monteith dam location, in Google Earth format (.kml) meatadatas.txt, a set of self-explanatory instructions and descriptions for data files. All other data are available upon request to the corresponding author at alexandreflorent.nolin@uqat.ca (institutional email), alexandreflorent.nolin@gmail.com (permanent email).
-
Abstract It is undeniable that coastal regions worldwide are facing unprecedented damages from catastrophic floods attributable to storm-tide (tidal) and extreme rainfall (pluvial). For flood-risk assessment, although recognizing compound impact of these drivers is a conventional practice, the marginal/individual impacts cannot be overlooked. In this letter, we propose a new measure, Tide-Rainfall Flood Quotient (TRFQ), to quantify the driver-specific flood potential of a coastal region arising from storm-tide or rainfall. A set of inundation and hazard maps are derived through a series of numerical and hydrodynamic flood model simulations comprising of design rainfall and design storm-tide. These experiments are demonstrated on three different geographically diverse flood-affected coastal regions in India. The new measure throws light on existing knowledge gaps on the propensity of coastal flooding induced by the marginal/individual contribution of storm-tide and rainfall. It shall prove useful in rationalizing long-term flood management strategies customizable for storm-tide and pluvial dominated global coastal regions.