Votre recherche
Résultats 846 ressources
-
Wetlands and reservoirs are important water flow and storage regulators in a river basin; therefore, they can play a crucial role in mitigating flood and hydrological drought risks. Despite the advancement of river basin theory and modeling, our knowledge is still limited about the extent to which these two regulators could perform such a role, especially under future climate extremes. To improve our understanding, we first coupled wetlands and reservoir operations into a semi-spatially explicit hydrological model and then applied it in a case study involving a large river basin in northeast China. The projection of future floods and hydrological droughts was performed using the hydrological model during different periods (near future: 2026–2050, middle century: 2051–2075, and end century: 2076–2100) under five future climate change scenarios. We found that the risk of future floods and hydrological droughts can vary across different periods – in particular, it will experience relatively large increases and slight decreases. This large river basin will experience flood events of longer duration, with larger peak flows and volume, and of enhanced flashiness compared to the historical period. Simultaneously, the hydrological droughts will be much more frequent, with longer durations and more serious deficits. Therefore, the risk of floods and droughts will, overall, increase further under future climate change even under the combined influence of reservoirs and wetlands. These findings highlight the hydrological regulation function of wetlands and reservoirs and attest that the combining of wetlands with reservoir operation cannot fully eliminate the increasing future flood and drought risks. To improve a river basin's resilience to the risks of future climate change, we argue that the implementation of wetland restoration and the development of accurate forecasting systems for effective reservoir operation are of great importance. Furthermore, this study demonstrated a wetland–reservoir integrated modeling and assessment framework that is conducive to risk assessment of floods and hydrological droughts and that can be used for other river basins in the world.
-
Abstract Current flood risk mapping, relying on historical observations, fails to account for increasing threat under climate change. Incorporating recent developments in inundation modelling, here we show a 26.4% (24.1–29.1%) increase in US flood risk by 2050 due to climate change alone under RCP4.5. Our national depiction of comprehensive and high-resolution flood risk estimates in the United States indicates current average annual losses of US$32.1 billion (US$30.5–33.8 billion) in 2020’s climate, which are borne disproportionately by poorer communities with a proportionally larger White population. The future increase in risk will disproportionately impact Black communities, while remaining concentrated on the Atlantic and Gulf coasts. Furthermore, projected population change (SSP2) could cause flood risk increases that outweigh the impact of climate change fourfold. These results make clear the need for adaptation to flood and emergent climate risks in the United States, with mitigation required to prevent the acceleration of these risks.
-
We explore factors that constrain implementation of Natural Flood Management ( NFM ), based on qualitative analysis of interviews with those influencing and enabling flood risk management in Scotland. NFM entails collaboration by multiple individuals and organisations to plan and deliver measures such as re‐meandering or buffer strips. Our interviewees identified many interacting issues. They particularly focused on difficulties in securing resources, and evidence gaps and uncertainties associated with NFM . Co‐ordination was not simple, often requiring new types of skill, expertise, and resources. NFM is thus outside the ‘comfort zone’ of many leading or engaged with flood risk management. These experiences echo and elaborate on other studies of attempts to encourage sustainable flood management. To tackle these challenges, practitioners should reflect how pre‐existing ideas and practices may shape and constrain new approaches to managing floods, while research is needed on specific strategies that can assist in enabling change.
-
Abstract People living in poverty are particularly vulnerable to shocks, including those caused by natural disasters such as floods and droughts. This paper analyses household survey data and hydrological riverine flood and drought data for 52 countries to find out whether poor people are disproportionally exposed to floods and droughts, and how this exposure may change in a future climate. We find that poor people are often disproportionally exposed to droughts and floods, particularly in urban areas. This pattern does not change significantly under future climate scenarios, although the absolute number of people potentially exposed to floods or droughts can increase or decrease significantly, depending on the scenario and region. In particular, many countries in Africa show a disproportionally high exposure of poor people to floods and droughts. For these hotspots, implementing risk-sensitive land-use and development policies that protect poor people should be a priority.
-
Abstract At the global scale, the warming of the atmosphere will increase the capacity of the atmosphere to hold and accelerate the redistribution of water in the atmosphere. This suggests that flood‐generating processes linked to the atmosphere are likely to increase. However, the I ntergovernmental P anel on C limate C hange projections of future floods involve extremely complex issues that defy simple generalisations. Warming will alter other aspects of the water cycle increasing evaporation, changing precipitation patterns and intensity, and also affecting the processes involved in surface storage of water, including snowpack generation, snowmelt, river ice break‐up, and glacial melt. Many of these are active in flood generation, and changes may cause floods to decrease as well as increase. However, these processes take place not at the global scale but at relatively local scale, making generalisations about flooding in future climates difficult and uncertain. At the global scale, the role of land use is generally unresolved, but at a watershed scale, land‐use effects can be as important as changes in the meteorological processes. This review shows that while meteorologically driven flooding is expected to increase in a changed climate, making a precise pronouncement regarding all floods is unwise, as many types of floods will respond differently to changing climate and that because floods are watershed scale events, these local effects will remain important.
-
A variety of techniques is available for providing information on the frequency and extent of flooding in river valleys. These techniques include the use of physiography, pedology, vegetation, occasional floods, regional floods of selected frequency, and flood profiles and backwater curves. Preliminary estimates of costs suggest that these range from a low of $1–4/mile of channel to a high of $400–1000/mile of channel. All estimates of flood hazards and damages contain significant uncertainties deriving from the variability and uncertainty of the estimates of hydrologic, hydraulic, and social phenomena. An accelerating demand for information coupled with recognition of the inherent element of judgment in any determination of flood or damage zones suggests additional emphasis on the adoption of different mapping techniques appropriate to the needs of different locations.
-
Floods can cause extensive damage proportional to their magnitude, depending on the watershed hydrology and terrain characteristics. Flood studies generally assume bathymetry as steady, while in reality it is constantly changing due to sediment transport. This study seeks to quantify the impact of different lake bathymetry conditions on flood dynamics. The Hydrotel and Telemac2D models are used to simulate floods for a lake with bathymetries from multiple year surveys. The bathymetries differ in bed elevation due to sediment accumulation and/or remobilisation. Results show that bathymetric differences produce a more noticeable effect for moderate flows than for maximum flows. During moderate flows, shallower bathymetries induce higher water levels and larger water extents. For peak flows, differences in water levels and extent are practically negligible for the different bathymetries tested. Higher water levels during moderate flows could produce longer flooding times and affect the community’s perception of flood impacts.
-
Habitat loss and degradation is a leading cause of the current biodiversity crisis. In the lake Saint-Pierre floodplain, agricultural intensification has led to the loss of substantial spawning and rearing areas for the yellow perch ( Perca flavescens Mitchill). Restoring perennial vegetation cover is key to ensure the persistence of the population, but the floodplain conditions limit our ability to do so. In this study, we tested the impact of companion plants ( Avena sativa L., Lolium multiflorum L.) and sowing rate on the establishment success of reed canarygrass ( Phalaris arundinacea L.; RCG) in year 2. RCG tolerates a wide range of environmental conditions and can provide the plant cover essential to the reproduction of yellow perch. We hypothesized that companion plants would reduce weed pressure and in turn improve RCG establishment, and that increasing the sowing rate would improve the establishment success. Contrary to our expectations, using companion plants generally reduced the cover and biomass of RCG. It also led to increased weed prevalence in most treatments. In addition, sowing at high rates did not impact RCG cover and biomass. Sowing RCG alone appears to be the most effective option to establish perennial vegetation supporting the recovery of the yellow perch population.
-
Floods are some of the most dangerous and most frequent natural disasters occurring in the northern region of Iran. Flooding in this area frequently leads to major urban, financial, anthropogenic, and environmental impacts. Therefore, the development of flood susceptibility maps used to identify flood zones in the catchment is necessary for improved flood management and decision making. The main objective of this study was to evaluate the performance of an Evidential Belief Function (EBF) model, both as an individual model and in combination with Logistic Regression (LR) methods, in preparing flood susceptibility maps for the Haraz Catchment in the Mazandaran Province, Iran. The spatial database created consisted of a flood inventory, altitude, slope angle, plan curvature, Topographic Wetness Index (TWI), Stream Power Index (SPI), distance from river, rainfall, geology, land use, and Normalized Difference Vegetation Index (NDVI) for the region. After obtaining the required information from various sources, 151 of 211 recorded flooding points were used for model training and preparation of the flood susceptibility maps. For validation, the results of the models were compared to the 60 remaining flooding points. The Receiver Operating Characteristic (ROC) curve was drawn, and the Area Under the Curve (AUC) was calculated to obtain the accuracy of the flood susceptibility maps prepared through success rates (using training data) and prediction rates (using validation data). The AUC results indicated that the EBF, EBF from LR, EBF-LR (enter), and EBF-LR (stepwise) success rates were 94.61%, 67.94%, 86.45%, and 56.31%, respectively, and the prediction rates were 94.55%, 66.41%, 83.19%, and 52.98%, respectively. The results showed that the EBF model had the highest accuracy in predicting flood susceptibility within the catchment, in which 15% of the total areas were located in high and very high susceptibility classes, and 62% were located in low and very low susceptibility classes. These results can be used for the planning and management of areas vulnerable to floods in order to prevent flood-induced damage; the results may also be useful for natural disaster assessment.
-
Although floods, as well as other natural disasters, can be considered as relevant causes of intra-generational inequalities, frequent catastrophes and the resulting damage to the territory can be seen as a consequence of a generalized indifference about future. Land protection is one of the societal issues typically concerning inter-generational solidarity, involving the administrative system in the implementation of proactive policies. In the last three decades, the widespread demand for subsidiarity has made local communities more and more independent, so that attention to the long-term effects—typically concerning the territorial system as a whole at geographical scale—has been dispersed, and the proactive policies that come from the central government have become more ineffective. Regarding the case of the 2009 flood in the Fiumedinisi-Capo Peloro river basin in North Eastern Sicily, we propose an economic valuation of the land protection policy. This valuation, compared to the cost of recovery of the damaged areas, can provide helpful information on the decision-making process concerning the trade-off between reactive and proactive land policy. The economic value of land protection was calculated by means of the method of the imputed preferences, to obtain a real measure of the social territorial value from the point of view of the harmony between social system and environment. This method consists of an estimate based on the attribution of the expenditures according to the importance of the different areas. Since the value of land protection has been calculated by discounting the expenditures stream, some considerations about the economic significance of the proactive policy are referred to the role played by the social discount rate in the inter-temporal economic calculation.
-
Abstract A major challenge in ecology is to link patterns and processes across different spatial and temporal scales. Flood plains are ideal model ecosystems to study (i) the processes that create and maintain environmental heterogeneity and (ii) to quantify the effects of environmental heterogeneity on ecosystem functioning and biodiversity. Fluvial processes of cut‐and‐fill alluviation create new channels, bars and benches within a flood plain that in turn provides new surface for subsequent vegetative recruitment and growth resulting in a shifting mosaic of interconnected aquatic and terrestrial habitat patches. Composition and spatial arrangement of these habitat patches control the movement of organisms and matter among adjacent patches; and the capacity of a habitat to process matter depends on the productivity of adjacent patches and on the exchange among these patches. The exchange of matter and organisms among habitats of different age and productivity is often pulsed in nature. Small pulses of a physical driver (e.g. short‐term increase in flow) can leach large amounts of nutrients thereby stimulating primary production in adjacent aquatic patches, or trigger mass emergence of aquatic insects that may in turn impact recipient terrestrial communities. Hence, biodiversity in a river corridor context is hierarchically structured and strongly linked to the dynamic biophysical processes and feedback mechanisms that drive these chronosequences over broad time and space scales. Today, the active conversion of degraded ecosystems back to a more heterogeneous and dynamic state has become an important aspect of restoration and management where maintaining or allowing a return to the shifting habitat mosaic dynamism is the goal with the expected outcome greater biodiversity and clean water among other valuable ecosystem goods and services. Copyright © 2009 John Wiley & Sons, Ltd.
-
Significant flood damage occurred near Montreal in May 2017, as flow from the upstream Ottawa River basin (ORB) reached its highest levels in over 50years. Analysis of observations and experiments performed with the fifth generation Canadian Regional Climate Model (CRCM5) show that much above average April precipitation over the ORB, a large fraction of which fell as rain on an existing snowpack, increased streamflow to near record-high levels. Subsequently, two heavy rainfall events affected the ORB in the first week of May, ultimately resulting in flooding. This heavy precipitation during April and May was linked to large-scale atmospheric features. Results from sensitivity experiments with CRCM5 suggest that the mass and distribution of the snowpack have a major influence on spring streamflow in the ORB. Furthermore, the importance of using an appropriate frozen soil parameterization when modelling spring streamflows in cold regions was confirmed. Event attribution using CRCM5 showed that events such as the heavy April 2017 precipitation accumulation over the ORB are between two and three times as likely to occur in the present-day climate as in the pre-industrial climate. This increase in the risk of heavy precipitation is linked to increased atmospheric moisture due to warmer temperatures in the present-day climate, a direct consequence of anthropogenic emissions, rather than changes in rain-generating mechanisms or circulation patterns. Warmer temperatures in the present-day climate also reduce early-spring snowpack in the ORB, offsetting the increase in rainfall and resulting in no discernible change to the likelihood of extreme surface runoff.
-
Despite the prognoses of the effects of global warming (e.g., rising sea levels, increasing river discharges), few international studies have addressed how flood preparedness should be stimulated among private citizens. This article aims to predict Dutch citizens’ flood preparedness intentions by testing a path model, including previous flood hazard experiences, trust in public flood protection, and flood risk perceptions (both affective and cognitive components). Data were collected through questionnaire surveys in two coastal communities ( n = 169, n = 244) and in one river area community ( n = 658). Causal relations were tested by means of structural equation modeling (SEM). Overall, the results indicate that both cognitive and affective mechanisms influence citizens’ preparedness intentions. First, a higher level of trust reduces citizens’ perceptions of flood likelihood, which in turn hampers their flood preparedness intentions (cognitive route). Second, trust also lessens the amount of dread evoked by flood risk, which in turn impedes flood preparedness intentions (affective route). Moreover, the affective route showed that levels of dread were especially influenced by citizens’ negative and positive emotions related to their previous flood hazard experiences. Negative emotions most often reflected fear and powerlessness, while positive emotions most frequently reflected feelings of solidarity. The results are consistent with the affect heuristic and the historical context of Dutch flood risk management. The great challenge for flood risk management is the accommodation of both cognitive and affective mechanisms in risk communications, especially when most people lack an emotional basis stemming from previous flood hazard events.