Votre recherche
Résultats 164 ressources
-
Seasonal snowpack deeply influences the distribution of meltwater among watercourses and groundwater. During rain-on-snow (ROS) events, the structure and properties of the different snow and ice layers dictate the quantity and timing of water flowing out of the snowpack, increasing the risk of flooding and ice jams. With ongoing climate change, a better understanding of the processes and internal properties influencing snowpack outflows is needed to predict the hydrological consequences of winter melting episodes and increases in the frequency of ROS events. This study develops a multi-method approach to monitor the key snowpack properties in a non-mountainous environment in a repeated and non-destructive way. Snowpack evolution during the winter of 2020–2021 was evaluated using a drone-based, ground-penetrating radar (GPR) coupled with photogrammetry surveys conducted at the Ste-Marthe experimental watershed in Quebec, Canada. Drone-based surveys were performed over a 200 m2 area with a flat and a sloped section. In addition, time domain reflectometry (TDR) measurements were used to follow water flow through the snowpack and identify drivers of the changes in snowpack conditions, as observed in the drone-based surveys. The experimental watershed is equipped with state-of-the-art automatic weather stations that, together with weekly snow pit measurements over the ablation period, served as a reference for the multi-method monitoring approach. Drone surveys conducted on a weekly basis were used to generate georeferenced snow depth, density, snow water equivalent and bulk liquid water content maps. Despite some limitations, the results show that the combination of drone-based GPR, photogrammetric surveys and TDR is very promising for assessing the spatiotemporal evolution of the key hydrological characteristics of the snowpack. For instance, the tested method allowed for measuring marked differences in snow pack behaviour between the first and second weeks of the ablation period. A ROS event that occurred during the first week did not generate significant changes in snow pack density, liquid water content and water equivalent, while another one that happened in the second week of ablation generated changes in all three variables. After the second week of ablation, differences in density, liquid water content (LWC) and snow water equivalent (SWE) between the flat and the sloped sections of the study area were detected by the drone-based GPR measurements. Comparison between different events was made possible by the contact-free nature of the drone-based measurements.
-
Abstract Background Posttraumatic stress disorder (PTSD) has been hailed by some as the emblematic mental disorder of the COVID-19 pandemic, assuming that PTSD’s life-threat criterion was met de facto. More plausible outcomes like adjustment disorder (AD) have been overlooked. Methods An online cross-sectional survey was launched in the initial stage of the pandemic using a convenience sample of 5 913 adults to compare the prevalence of COVID-related probable PTSD versus probable AD. The abridged Impact of Event Scale – Revised (IES-6) assessed the severity of trauma- and stressor-related symptoms over the previous week. Demographic and pandemic-related data (e.g., receiving a formal diagnosis of COVID-19, job loss, loss of loved one, confinement, material hardship) were collected. A Classification and Regression Tree analysis was conducted to uncover the pandemic experiences leading to clinical ‘caseness’. Caseness was defined by a score > 9 on the IES-6 symptom measure and further characterized as PTSD or AD depending on whether the Peritraumatic Distress Inventory’s life-threat item was endorsed or not. Results The participants were predominantly Caucasian (72.8%), women (79.2%), with a university degree (85%), and a mean age of 42.22 ( SD = 15.24) years; 3 647 participants (61.7%; 95%CI [60.4, 63.0]) met the threshold for caseness. However, when perceived life-threat was accounted for, only 6.7% (95%CI [6.1, 7.4]) were classified as PTSD cases, and 55% (95%CI [53.7, 56.2]) as AD cases. Among the AD cases, three distinct profiles emerged marked by the following: (i) a worst personal pandemic experience eliciting intense fear, helplessness or horror (in the absence, however, of any life-threat), (ii) a pandemic experience eliciting sadness/grief, and (iii) worrying intensely about the safety of significant others. Conclusions Studies considering the life-threat criterion as met de facto during the pandemic are confusing PTSD for AD on most counts. This misconception is obscuring the various AD-related idioms of distress that have emerged during the pandemic and the actual treatment needs.
-
Recently, in situ YSI EXO2 phycocyanin fluorescence probes have been widely deployed as a means to determine cyanobacterial abundance in drinking water sources, yet few studies have evaluated the effects of natural organic matter (NOM) and the ambient water temperature on the probe readings. In this study, Suwannee River NOM was added to laboratory cultivated cyanobacterial species to test the performance of the phycocyanin probe. The impact of temperature on phycocyanin fluorescence was evaluated by monitoring the laboratory cultivated cyanobacterial species and extracted phycocyanin pigment. Additionally, in situ phycocyanin fluorescence of the field samples from the water intake of a drinking water treatment plant (DWTP) in 2018 were compared with grab sample laboratory taxonomic analyses. We found: (1) the presence of Suwannee River NOM leads to the decrease in cell-bound cyanobacterial phycocyanin readings; (2) increasing ambient water temperature reduces dissolved and cell-bound cyanobacterial phycocyanin readings; (3) field study phycocyanin probe readings significantly correlated with the total cyanobacterial biovolume (R = 0.73, p < 0.1), and the relationship depends on the biovolume of dominant cyanobacterial species; (4) phycocyanin probe readings have a strong positive correlation with the natural light intensities; and (5) probe users should be fully aware of the sources of interferences when interpreting the results and apply the other physical-chemical parameters data simultaneously generated by the fluorometry to improve the probe’s measurements.
-
Health-related concerns about cyanobacteria-laden sludge of drinking water treatment plants (DWTPs) have been raised in the past few years. Microscopic taxonomy, shotgun metagenomic sequencing, and microcystin (MC) measurement were applied to study the fate of cyanobacteria and cyanotoxins after controlled sludge storage (stagnation) in the dark in a full-scale drinking water treatment plant within 7 to 38 days. For four out of eight dates, cyanobacterial cell growth was observed by total taxonomic cell counts during sludge stagnation. The highest observed cell growth was 96% after 16 days of stagnation. Cell growth was dominated by potential MC producers such as Microcystis, Aphanocapsa, Chroococcus, and Dolichospermum. Shotgun metagenomic sequencing unveiled that stagnation stress shifts the cyanobacterial communities from the stress-sensitive Nostocales (e.g., Dolichospermum) order towards less compromised orders and potential MC producers such as Chroococcales (e.g., Microcystis) and Synechococcales (e.g., Synechococcus). The relative increase of cyanotoxin producers presents a health challenge when the supernatant of the stored sludge is recycled to the head of the DWTP or discharged into the source. These findings emphasize the importance of a strategy to manage cyanobacteria-laden sludge and suggest practical approaches should be adopted to control health/environmental impacts of cyanobacteria and cyanotoxins in sludge.
-
The excessive proliferation of cyanobacteria in surface waters is a widespread problem worldwide, leading to the contamination of drinking water sources. Short- and long-term solutions for managing cyanobacterial blooms are needed for drinking water supplies. The goal of this research was to investigate the cyanobacteria community composition using shotgun metagenomics in a short term, in situ mesocosm experiment of two lakes following their coagulation with ferric sulfate (Fe2(SO4)3) as an option for source water treatment. Among the nutrient paramenters, dissolved nitrogen was related to Microcystis in both Missisquoi Bay and Petit Lac St. François, while the presence of Synechococcus was related to total nitrogen, dissolved nitrogen, dissolved organic carbon, and dissolved phosphorus. Results from the shotgun metagenomic sequencing showed that Dolichospermum and Microcystis were the dominant genera in all of the mesocosms in the beginning of the sampling period in Missisquoi Bay and Petit Lac St. François, respectively. Potentially toxigenic genera such as Microcystis were correlated with intracellular microcystin concentrations. A principal component analysis showed that there was a change of the cyanobacterial composition at the genus level in the mesocosms after two days, which varied across the studied sites and sampling time. The cyanobacterial community richness and diversity did not change significantly after its coagulation by Fe2(SO4)3 in all of the mesocosms at either site. The use of Fe2(SO4)3 for an onsite source water treatment should consider its impact on cyanobacterial community structure and the reduction of toxin concentrations.
-
Freshwater bodies and, consequently, drinking water treatment plants (DWTPs) sources are increasingly facing toxic cyanobacterial blooms. Even though conventional treatment processes including coagulation, flocculation, sedimentation, and filtration can control cyanobacteria and cell-bound cyanotoxins, these processes may encounter challenges such as inefficient removal of dissolved metabolites and cyanobacterial cell breakthrough. Furthermore, conventional treatment processes may lead to the accumulation of cyanobacteria cells and cyanotoxins in sludge. Pre-oxidation can enhance coagulation efficiency as it provides the first barrier against cyanobacteria and cyanotoxins and it decreases cell accumulation in DWTP sludge. This critical review aims to: (i) evaluate the state of the science of cyanobacteria and cyanotoxin management throughout DWTPs, as well as their associated sludge, and (ii) develop a decision framework to manage cyanobacteria and cyanotoxins in DWTPs and sludge. The review identified that lab-cultured-based pre-oxidation studies may not represent the real bloom pre-oxidation efficacy. Moreover, the application of a common exposure unit CT (residual concentration × contact time) provides a proper understanding of cyanobacteria pre-oxidation efficiency. Recently, reported challenges on cyanobacterial survival and growth in sludge alongside the cell lysis and cyanotoxin release raised health and technical concerns with regards to sludge storage and sludge supernatant recycling to the head of DWTPs. According to the review, oxidation has not been identified as a feasible option to handle cyanobacterial-laden sludge due to low cell and cyanotoxin removal efficacy. Based on the reviewed literature, a decision framework is proposed to manage cyanobacteria and cyanotoxins and their associated sludge in DWTPs.
-
The impact of oxidation on mitigation of cyanobacteria and cyanotoxins in drinking water treatment sludge was investigated at the laboratory and treatment plant scales. Two common oxidants, KMnO4 (5 and 10 mg/L) and H2O2 (10 and 20 mg/L) were applied under controlled steady-state conditions. Non-oxidized and oxidized sludge was left to stagnate in the dark for 7 to 38 days. Controlled laboratory trials show that KMnO4 and H2O2 decreased cell counts up to 62% and 77%, respectively. The maximum total MC level reduction achieved after oxidation was 41% and 98% using 20 mg/L H2O2 and 10 mg/L KMnO4, respectively. Stagnation caused cell growth up to 2.6-fold in 8 out of 22 oxidized samples. Microcystin (MC) producer orders as Chroococcales and Synechococcales were persistent while Nostocales was sensitive to combined oxidation and stagnation stresses. In parallel, two on-site shock oxidation treatments were performed in the DWTP’s sludge holding tank using 10 mg/L KMnO4. On-site shock oxidation decreased taxonomic cell counts by up to 43% within 24 h. Stagnation preceded by on-site shock oxidation could increase total cell counts by up to 55% as compared to oxidation alone. The increase of cell counts and mcyD gene copy numbers during stagnation revealed the impact of oxidation/stagnation on cyanobacterial cell growth. These findings show the limitations of sludge oxidation as a strategy to manage cyanobacteria and cyanotoxins in sludge and suggest that alternative approaches to prevent the accumulation and mitigation of cyanobacteria in sludge should be considered.
-
The temperate mixedwood forests of eastern North America have been managed by partial cutting for several decades. To ensure that regeneration contributes to replacing the commercial-size stems that are removed by partial cutting, forest managers need to anticipate how saplings (i.e., regenerating trees with a diameter at breast height >1.0 cm) develop in terms of number and diameter. Using up to 20 years of monitoring data from three study sites, we developed a transition matrix model to predict the future number of saplings and their diameter distribution for mixed yellow birch ( Betula alleghaniensis Britton) – conifer stands. Our results show that partial cutting allowed yellow birch, red maple ( Acer rubrum L.), red spruce ( Picea rubens Sarg.), and balsam fir ( Abies balsamea (L.) Mill.) saplings to reach merchantable size faster and in greater numbers than in untreated control plots. We also found that fewer hardwood saplings (yellow birch and red maple) than softwood saplings (red spruce and balsam fir) were required to produce 1 m 2 ·ha −1 of merchantable basal area after 20–40 years. Finally, our model provides a tool for forest managers to predict sapling development in mixed hardwood and softwood stands over a full cutting cycle.
-
Snow is the dominant form of precipitation and the main cryospheric feature of the High Arctic (HA) covering its land, sea, lake and river ice surfaces for a large part of the year. The snow cover in the HA is involved in climate feedbacks that influence the global climate system, and greatly impacts the hydrology and the ecosystems of the coldest biomes of the Northern Hemisphere. The ongoing global warming trend and its polar amplification is threatening the long-term stability of the snow cover in the HA. This study presents an extensive review of the literature on observed and projected snow cover conditions in the High Arctic region. Several key snow cover metrics were reviewed, including snowfall, snow cover duration (SCD), snow cover extent (SCE), snow depth (SD), and snow water equivalent (SWE) since 1930 based on in situ, remote sensing and simulations results. Changes in snow metrics were reviewed and outlined from the continental to the local scale. The reviewed snow metrics displayed different sensitivities to past and projected changes in precipitation and air temperature. Despite the overall increase in snowfall, both observed from historical data and projected into the future, some snow cover metrics displayed consistent decreasing trends, with SCE and SCD showing the most widespread and steady decreases over the last century in the HA, particularly in the spring and summer seasons. However, snow depth and, in some regions SWE, have mostly increased; nevertheless, both SD and SWE are projected to decrease by 2030. By the end of the century, the extent of Arctic spring snow cover will be considerably less than today (10–35%). Model simulations project higher winter snowfall, higher or lower maximum snow depth depending on regions, and a shortened snow season by the end of the century. The spatial pattern of snow metrics trends for both historical and projected climates exhibit noticeable asymmetry among the different HA sectors, with the largest observed and anticipated changes occurring over the Canadian HA.
-
Reduced snow storage has been associated with lower river low flows in mountainous catchments, exacerbating summer hydrological droughts. However, the impacts of changing snow storage on summer low flows in low-elevation, snow-affected catchments has not yet been investigated. To address this knowledge gap, the dominant hydroclimate predictors of summer low flows were first identified through correlation analysis in 12 tributary catchments of the St. Lawrence River in the Canadian province of Quebec. The correlation results show that summer low flow is most sensitive to summer rainfall, while maximum snow water equivalent (SWE) is the dominant winter preconditioning factor of low flows, particularly at the end of summer. The multivariate sensitivity of summer low flow to hydroclimate predictors was then quantified by multilevel regression analysis, considering also the effect of catchment biophysical attributes. Accumulated rainfall since snow cover disappearance was found to be the prime control on summer low flow, as expected for the humid climate of Quebec. Maximum SWE had a secondary but significant positive influence on low flow, sometimes on the same order as the negative effect of evapotranspiration losses. As a whole, our results show that in these low elevation catchments, thicker winter snowpacks that last longer and melt slower in the spring are conducive to higher low flows in the following summer. More rugged and forested catchments with coarser soils were found to have higher summer low flows than flatter agricultural catchments with compacted clayed soils. This emphasizes the role of soils and geology on infiltration, aquifer recharge and related river baseflow in summer. Further climate warming and snowpack depletion could reduce future summer low flow, exacerbating hydrological droughts and impacting ecosystems integrity and ecological services.
-
Gas and particulate matter (PM) emissions from Masaya volcano, Nicaragua, cause substantial regional volcanic air pollution (VAP). We evaluate the suitability of low-cost SO2 and PM sensors for a continuous air-quality network. The network was deployed for six months in five populated areas (4-16 km from crater). The SO2 sensors failed and recorded erroneous values on multiple occasions, likely due to corrosion, requiring significant maintenance commitment. The PM sensors were found to be robust but data required correction for humidity. SO2 measurements could not be used as stand-alone tools to detect occurrence of VAP episodes (VAPE), but SO2/PM correlation reliably achieved this at near-field stations, as confirmed by meteorological forecasts and satellite imagery. Above-background PM concentrations reliably identified VAPE at both near-field and far-field stations. We suggest that a continuous network can be built from a combination of low-cost PM and SO2 sensors with a greater number of PM-only sensors.
-
This paper presents experimental and numerical studies on the erosion of a horizontal granular bed by a two-dimensional plane vertical impinging jet to predict the eroded craters’ size scaling (depth and width). The simulations help understand the microscopic processes that govern erosion in this complex flow. A modified jet-bed distance, accounting for the plane jet virtual origin, is successfully used to obtain a unique relationship between the crater size and a local Shields parameter. This work develops a two-phase flow numerical model to reproduce the experimental results. The numerical techniques are based on a finite volume formulation to approximate spatial derivatives, a projection technique to calculate the pressure and velocity for each phase, and a staggered grid to avoid spurious oscillations. Different options for the sediment’s solid-to-liquid transition during erosion are proposed, tested, and discussed. One model is based on unified equations of continuum mechanics, others on modified closure equations for viscosity or momentum transfer. A good agreement between the numerical solutions and the experimental measurements is obtained.
-
Every year, in the Vietnam Mekong Delta Coastal Zone (VMDCZ), erosions cause approximately 300 ha of agricultural land loss. Therefore, measures for shoreline protection are urgently needed. This paper discusses the impacts of protection measures in the Go-Cong Coastal Zone to prevent erosion/accretion processes, predicted by two numerical models, MIKE21-FM and TELEMAC-2D. Hard and soft measures have been proposed using breakwaters and sandbars, respectively. The simulations show that the erosion/accretion trends provided by both models are similar. For breakwaters, MIKE21-FM provides less accretion than TELEMAC-2D in areas extending over 300 m and 500 m from shorelines. However, for sandbars, MIKE21-FM shows higher accretion within areas extending over 500 m but less than 300 m. Sandbars cause higher accretion in a larger area, extending over 1000 m offshore. The simulation results allow us to propose two alternative measures: (1) a row of several breakwater units will be implanted at 300 m offshore. The length of each unit is 600 m, with a gap between two neighbouring units of 70 m and a crest elevation of 2.2 m above mean sea level (MSL). (2) A row of sandbar units will be posed at 500 m offshore, with a unit length of 1000 m and a gap between the two neighbouring units of 200 m. The crest elevation is fixed at MSL.
-
Non-staggered triangular grids have many advantages in performing river or ocean modeling with the finite-volume method. However, horizontal divergence errors may occur, especially in large-scale hydrostatic calculations with centrifugal acceleration. This paper proposes an unstructured finite-volume method with a filtered scheme to mitigate the divergence noise and avoid further influencing the velocities and water elevation. In hydrostatic pressure calculations, we apply the proposed method to three-dimensional curved channel flows. Approximations reduce the numerical errors after filtering the horizontal divergence operator, and the approximation is second-order accurate. Numerical results for the channel flow accurately calculate the velocity profile and surface elevation at different Froude numbers. Moreover, secondary flow features such as the vortex pattern and its movement along the channel sections are also well captured.
-
Munitions or Unexploded Ordnance (UXO) are ammunitions belonging to a larger family of explosives from past military activities. Sea disposal of munitions was a common practice from the late 1800s to 1970 when international conventions put an end to the practice. The exact quantity of munitions dumped into the Oceans globally is unknown due to sparse documentation but conservative estimates of known records stand at 1.6 million tons (Wilkinson, 2017). After decades underwater, some munitions have resurfaced in the nearshore, presumably washed onshore or exhumed by high-energy wave action. Extreme events could be major causes of migration and exposure of UXO in the nearshore. The quantification of variable density munitions behavior in the swash zone remains poorly understood. Biofouling, encrustation, and corrosion can alter the density of the underwater munitions, which consequently impacts the behavior of the munitions in the swash zone. Hence, this experimental study aimed to quantify the behavior of variable density munitions in the swash zone under dam-break scenarios. The findings of the study create more insights into the behavior of variable density munitions in the swash zone and can also serve as validation data for probabilistic models on munitions behavior in the swash zone under extreme events.
-
Nature-based solutions (NbS) for coastal protection has recently gained increased attention worldwide as a sustainable, economical and eco-friendly alternative to conventional grey structures, particularly under the threat of climate change (Temmerman et al. 2013). Wave energy dissipation by vegetation can be parameterized by the total horizontal force acting on the plant; expressed using a Morison-type equation considering only the form drag component (Dalrymple et al. 1984). Modelling wave-vegetation interaction is challenging in a laboratory environment (Lara et al. 2016) and it is difficult to accomplish a realistic representation of a plant’s biomechanical behavior and geometry using plant mimics or surrogates. Few studies have modelled real saltmarsh vegetation in large scale laboratory facilities (Moller et al. 2014; Maza et al. 2015) and quantified wave attenuation, particularly for engineered living shorelines (Maryland DoE, 2013). Further research is needed, particularly in the Canadian context, to investigate the capacity of different saltmarsh species to effectively attenuate waves and wave runup under storm conditions, to examine the plant’s drag coefficient and to bridge the gap to develop technical design specifications for the detailed design of living shorelines.