Votre recherche
Résultats 7 ressources
-
Abstract. Spaceborne microwave remote sensing (300 MHz–100 GHz) provides a valuable method for characterizing environmental changes, especially in Arctic–boreal regions (ABRs) where ground observations are generally spatially and temporally scarce. Although direct measurements of carbon fluxes are not feasible, spaceborne microwave radiometers and radar can monitor various important surface and near-surface variables that affect terrestrial carbon cycle processes such as respiratory carbon dioxide (CO2) fluxes; photosynthetic CO2 uptake; and processes related to net methane (CH4) exchange including CH4 production, transport and consumption. Examples of such controls include soil moisture and temperature, surface freeze–thaw cycles, vegetation water storage, snowpack properties and land cover. Microwave remote sensing also provides a means for independent aboveground biomass estimates that can be used to estimate aboveground carbon stocks. The microwave data record spans multiple decades going back to the 1970s with frequent (daily to weekly) global coverage independent of atmospheric conditions and solar illumination. Collectively, these advantages hold substantial untapped potential to monitor and better understand carbon cycle processes across ABRs. Given rapid climate warming across ABRs and the associated carbon cycle feedbacks to the global climate system, this review argues for the importance of rapid integration of microwave information into ABR terrestrial carbon cycle science.
-
Abstract Surface conditions are known to mediate the impacts of climate warming on permafrost. This calls for a better understanding of the environmental conditions that control the thermal regime and the depth of the active layer, especially within heterogeneous tundra landscapes. This study analyzed the spatial relationships between thaw depths, ground surface temperature (GST), and environmental conditions in a High Arctic tundra environment at Bylot Island, Nunavut, Canada. Measurements were distributed within the two dominant landforms, namely earth hummocks and low‐center polygons, and across a topographic gradient. Our results revealed that GST and thaw depth were highly heterogeneous, varying by up to 3.7°C and by more than 20 cm over short distances (<1 m) within periglacial landforms. This microscale variability sometimes surpassed the variability at the hillslope scale, especially in summer. Late‐winter snowpack thickness was found to be the prime control on the spatial variability in winter soil temperatures due to the highly heterogeneous snow cover induced by blowing snow, and this thermal effect carried over into summer. However, microtopography was the predominant driver of the spatial variability in summer GST, followed by altitude and moss thickness. In contrast, the spatial variability in thaw depth was influenced predominantly by variations in moss thickness. Hence, summer microclimate conditions dominated active layer development, but a thicker snowpack favored soil cooling in the following summer, due to the later disappearance of snow cover. These results enhance our understanding of High Arctic tundra environments and highlight the complexity of considering surface feedback effects in future projections of permafrost states within heterogeneous tundra landscapes.
-
Abstract. Accurate knowledge of snow depth distributions in forested regions is crucial for applications in hydrology and ecology. In such a context, understanding and assessing the effect of vegetation and topographic conditions on snow depth variability is required. In this study, the spatial distribution of snow depth in two agro-forested sites and one coniferous site in eastern Canada was analyzed for topographic and vegetation effects on snow accumulation. Spatially distributed snow depths were derived by unmanned aerial vehicle light detection and ranging (UAV lidar) surveys conducted in 2019 and 2020. Distinct patterns of snow accumulation and erosion in open areas (fields) versus adjacent forested areas were observed in lidar-derived snow depth maps at all sites. Omnidirectional semi-variogram analysis of snow depths showed the existence of a scale break distance of less than 10 m in the forested area at all three sites, whereas open areas showed comparatively larger scale break distances (i.e., 11–14 m). The effect of vegetation and topographic variables on the spatial variability in snow depths at each site was investigated with random forest models. Results show that the underlying topography and the wind redistribution of snow along forest edges govern the snow depth variability at agro-forested sites, while forest structure variability dominates snow depth variability in the coniferous environment. These results highlight the importance of including and better representing these processes in physically based models for accurate estimates of snowpack dynamics.
-
Seasonal forecasting of spring floods in snow-covered basins is challenging due to the ambiguity in the driving processes, uncertain estimations of antecedent catchment conditions and the choice of predictor variables. In this study we attempt to improve the prediction of spring flow peaks in southern Quebec, Canada, by studying the preconditioning mechanisms of runoff generation and their impact on inter-annual variations in the timing and magnitude of spring peak flow. Historical observations and simulated data from a hydrological and snowmelt model were used to study the antecedent conditions that control flood characteristics in twelve snow-dominated catchments. Maximum snow accumulation (peak SWE), snowmelt and rainfall volume, snowmelt and rainfall intensity, and soil moisture were estimated during the pre-flood period. Stepwise multivariate linear regression analysis was used to identify the most relevant predictors and assess their relative contribution to the interannual variability of flood characteristics. Results show that interannual variations in spring peak flow are controlled differently between basins. Overall, interannual variations in peak flow were mainly governed, in order of importance, by snowmelt intensity, rainfall intensity, snowmelt volume, rainfall volume, peak SWE, and soil moisture. Variations in the timing of peak flow were controlled in most basins by rainfall volume and rainfall and snowmelt intensity. In the northernmost, snow-dominated basins, pre-flood rainfall amount and intensity mostly controlled peak flow variability, whereas in the southern, rainier basins snowpack conditions and melt dynamics controlled this variability. Snowpack interannual variations were found to be less important than variations in rainfall in forested basins, where snowmelt is more gradual. Conversely, peak flow was more sensitive to snowpack conditions in agricultural basins where snowmelt occurs faster. These results highlight the impact of land cover and use on spring flood generation mechanism, and the limited predictability potential of spring floods using simple methods and antecedent hydrological factors.
-
Abstract This study confronts the new concept of ‘surface storage’ with the old concept of ‘sponge effect’ to explain the spatio-temporal variability of the annual daily maximum flows measured in 17 watersheds of southern Quebec during the period 1930–2019. The new concept takes into account the hydrological impacts of wetlands and other topographic components of the landscape (lakes, depressions, ditches, etc.) while that of the sponge effect only takes into account the hydrological impacts of wetlands. With regard to spatial variability, the area of wetlands and other water bodies is the variable best correlated negatively with the magnitude but positively with the duration of flows. As for the temporal variability, the application of the long-term trend tests revealed a significant increase in the magnitude and, to a lesser extent, the duration of the flows occurring in the watersheds of the north shore characterized by a greater area of wetlands and other water bodies (>5%). This increase is explained by the fact that the storage capacity of these land types, which remains unchanged over time, does not make it possible to store the surplus runoff water brought by the increase in rainfall during the snowmelt season.