Votre recherche
Résultats 2 ressources
-
Abstract In northern hardwood forests, tree markers select the trees to be harvested during logging operations using classification systems that assign harvest priorities based on the presence of a wide range of individual defects. According to the most recent advances in our understanding of the impact of defects on both tree vigour (the risk of mortality or decline in growth) and quality (the potential for recovering valuable sawlogs), tree markers should adopt a simpler classification system that considers fewer defects than the current operational practice, and they should prioritize the removal of trees with crown dieback. Since the probability of developing defects and dying increases substantially with tree diameter, tree markers should also favour the removal of larger trees that have maintained their quality. However, these recommendations were developed based on tree-level analyses. To provide further validation at the stand scale, we compared stand improvement and value recovery under three tree marking regimes: a new, simplified regime based on the recommendations above, and two regimes used in the province of Quebec, Canada. To do so, we conducted tree marking simulations and value recovery assessments in 14 managed stands distributed across the northern hardwood range of Quebec. Our results confirmed that the simplified tree marking regime not only facilitated stand improvement by removing a greater proportion of low-vigour trees, but also recovered significantly more value (17% on average) at the stand scale. By prioritizing the removal of trees with crown dieback, the simplified regime was superior at salvaging the current value of low-vigour trees before they die or decline in quality. Based on our results, we propose simplified and empirically-validated tree marking guidelines for northern hardwood forests.
-
The 2023 wildfire season in Québec set records due to extreme warm and dry conditions, burning 4.5 million hectares and indicating persistent and escalating impacts associated with climate change. This study reviews the unusual weather conditions that led to the fires, discussing their extensive impacts on the forest sector, fire management, boreal caribou habitats, and particularly the profound effects on First Nation communities. The wildfires led to significant declines in forest productivity and timber supply, overwhelming fire management resources, and necessitating widespread evacuations. First Nation territories were dramatically altered, facing severe air quality issues and disruptions. While caribou impacts were modest across the province, the broader ecological, economical, and social repercussions were considerable. To mitigate future extreme wildfire seasons, the study suggests changes in forest management practices to increase forest resilience and resistance, adapting industrial structures to changes in wood type harvested, and enhancing fire suppression and risk management strategies. It calls for a comprehensive, unified approach to risk management that incorporates the lessons learned from the 2023 fire season and accounts for ongoing climate change. The studyunderscores the urgent need for detailed planning and proactive measures to reduce the growing risks and impacts of wildfires in a changing climate.