Votre recherche
Résultats 2 ressources
-
Abstract Debris-covered glaciers are an important component of the mountain cryosphere and influence the hydrological contribution of glacierized basins to downstream rivers. This study examines the potential to make estimates of debris thickness, a critical variable to calculate the sub-debris melt, using ground-based thermal infrared radiometry (TIR) images. Over four days in August 2019, a ground-based, time-lapse TIR digital imaging radiometer recorded sequential thermal imagery of a debris-covered region of Peyto Glacier, Canadian Rockies, in conjunction with 44 manual excavations of debris thickness ranging from 10 to 110 cm, and concurrent meteorological observations. Inferring the correlation between measured debris thickness and TIR surface temperature as a base, the effectiveness of linear and exponential regression models for debris thickness estimation from surface temperature was explored. Optimal model performance ( R 2 of 0.7, RMSE of 10.3 cm) was obtained with a linear model applied to measurements taken on clear nights just before sunrise, but strong model performances were also obtained under complete cloud cover during daytime or nighttime with an exponential model. This work presents insights into the use of surface temperature and TIR observations to estimate debris thickness and gain knowledge of the state of debris-covered glacial ice and its potential hydrological contribution.
-
Abstract. Accurate knowledge of snow depth distributions in forested regions is crucial for applications in hydrology and ecology. In such a context, understanding and assessing the effect of vegetation and topographic conditions on snow depth variability is required. In this study, the spatial distribution of snow depth in two agro-forested sites and one coniferous site in eastern Canada was analyzed for topographic and vegetation effects on snow accumulation. Spatially distributed snow depths were derived by unmanned aerial vehicle light detection and ranging (UAV lidar) surveys conducted in 2019 and 2020. Distinct patterns of snow accumulation and erosion in open areas (fields) versus adjacent forested areas were observed in lidar-derived snow depth maps at all sites. Omnidirectional semi-variogram analysis of snow depths showed the existence of a scale break distance of less than 10 m in the forested area at all three sites, whereas open areas showed comparatively larger scale break distances (i.e., 11–14 m). The effect of vegetation and topographic variables on the spatial variability in snow depths at each site was investigated with random forest models. Results show that the underlying topography and the wind redistribution of snow along forest edges govern the snow depth variability at agro-forested sites, while forest structure variability dominates snow depth variability in the coniferous environment. These results highlight the importance of including and better representing these processes in physically based models for accurate estimates of snowpack dynamics.