Votre recherche
Résultats 4 ressources
-
Seasonal snowpack deeply influences the distribution of meltwater among watercourses and groundwater. During rain-on-snow (ROS) events, the structure and properties of the different snow and ice layers dictate the quantity and timing of water flowing out of the snowpack, increasing the risk of flooding and ice jams. With ongoing climate change, a better understanding of the processes and internal properties influencing snowpack outflows is needed to predict the hydrological consequences of winter melting episodes and increases in the frequency of ROS events. This study develops a multi-method approach to monitor the key snowpack properties in a non-mountainous environment in a repeated and non-destructive way. Snowpack evolution during the winter of 2020–2021 was evaluated using a drone-based, ground-penetrating radar (GPR) coupled with photogrammetry surveys conducted at the Ste-Marthe experimental watershed in Quebec, Canada. Drone-based surveys were performed over a 200 m2 area with a flat and a sloped section. In addition, time domain reflectometry (TDR) measurements were used to follow water flow through the snowpack and identify drivers of the changes in snowpack conditions, as observed in the drone-based surveys. The experimental watershed is equipped with state-of-the-art automatic weather stations that, together with weekly snow pit measurements over the ablation period, served as a reference for the multi-method monitoring approach. Drone surveys conducted on a weekly basis were used to generate georeferenced snow depth, density, snow water equivalent and bulk liquid water content maps. Despite some limitations, the results show that the combination of drone-based GPR, photogrammetric surveys and TDR is very promising for assessing the spatiotemporal evolution of the key hydrological characteristics of the snowpack. For instance, the tested method allowed for measuring marked differences in snow pack behaviour between the first and second weeks of the ablation period. A ROS event that occurred during the first week did not generate significant changes in snow pack density, liquid water content and water equivalent, while another one that happened in the second week of ablation generated changes in all three variables. After the second week of ablation, differences in density, liquid water content (LWC) and snow water equivalent (SWE) between the flat and the sloped sections of the study area were detected by the drone-based GPR measurements. Comparison between different events was made possible by the contact-free nature of the drone-based measurements.
-
Abstract The increased frequency of mild rain‐on‐snow (R.O.S.) events in cold regions associated with climate change is projected to affect snowpack structure and hydrological behaviour. The ice layers that form in a cold snowpack when R.O.S. events occur have been shown to influence flowthrough processes and liquid water retention, with consequences for winter floods, groundwater recharge, and water resources management. This study explores interconnections between meteorological conditions, ice layer formation, and lateral flows during R.O.S. events throughout the 2018–2019 winter in meridional Quebec, Canada. Automated hydro‐meteorological measurements, such as water availability for runoff, snow water equivalent, and snowpit observations, are used to compute water and energy balances, making it possible to characterize a snowpack's internal conditions and flowthrough regimes. For compatibility assessment, water and energy balances‐based flowthrough scenarios are then compared to different hydro‐meteorological variables', such as water table or streamlet water levels. The results show an association between highly variable meteorological conditions, frequent R.O.S. events, and ice layer formation. Lateral flows were mainly observed during the early stage of the ablation period. The hydrologically significant lateral flows observed in the study are associated with winter conditions that are predicted to become more frequent in a changing climate, stressing the need for further evaluation of their potential impact at the watershed scale.
-
This study assesses the performance of UAV lidar system in measuring high-resolution snow depths in agro-forested landscapes in southern Québec, Canada. We used manmade, mobile ground control points in summer and winter surveys to assess the absolute vertical accuracy of the point cloud. Relative accuracy was determined by a repeat flight over one survey block. Estimated absolute and relative errors were within the expected accuracy of the lidar (~5 and ~7 cm, respectively). The validation of lidar-derived snow depths with ground-based measurements showed a good agreement, however with higher uncertainties observed in forested areas compared with open areas. A strip alignment procedure was used to attempt the correction of misalignment between overlapping flight strips. However, the significant improvement of inter-strip relative accuracy brought by this technique was at the cost of the absolute accuracy of the entire point cloud. This phenomenon was further confirmed by the degraded performance of the strip-aligned snow depths compared with ground-based measurements. This study shows that boresight calibrated point clouds without strip alignment are deemed to be adequate to provide centimeter-level accurate snow depth maps with UAV lidar. Moreover, this study provides some of the earliest snow depth mapping results in agro-forested landscapes based on UAV lidar.
-
Abstract. This article presents a comprehensive hydrometeorological dataset collected over the past two decades throughout the Cordillera Blanca, Peru. The data-recording sites, located in the upper portion of the Rio Santa valley, also known as the Callejon de Huaylas, span an elevation range of 3738–4750 m a.s.l. As many historical hydrological stations measuring daily discharge across the region became defunct after their installation in the 1950s, there was a need for new stations to be installed and an opportunity to increase the temporal resolution of the streamflow observations. Through inter-institutional collaboration, the hydrometeorological network described in this paper was deployed with the goal of evaluating how progressive glacier mass loss was impacting stream hydrology, and understanding better the local manifestation of climate change over diurnal to seasonal and interannual time scales. The four automatic weather stations supply detailed meteorological observations and are situated in a variety of mountain landscapes, with one on a high-mountain pass, another next to a glacial lake, and two in glacially carved valleys. Four additional temperature and relative humidity loggers complement the weather stations within the Llanganuco valley by providing these data across an elevation gradient. The six streamflow gauges are located in tributaries to the Rio Santa and collect high-temporal-resolution runoff data. The datasets presented here are available freely from https://doi.org/10.4211/hs.35a670e6c5824ff89b3b74fe45ca90e0 (Mateo et al., 2021). Combined, the hydrological and meteorological data collected throughout the Cordillera Blanca enable detailed research of atmospheric and hydrological processes in tropical high-mountain terrain.