Votre recherche
Résultats 4 ressources
-
Abstract The increased frequency of mild rain‐on‐snow (R.O.S.) events in cold regions associated with climate change is projected to affect snowpack structure and hydrological behaviour. The ice layers that form in a cold snowpack when R.O.S. events occur have been shown to influence flowthrough processes and liquid water retention, with consequences for winter floods, groundwater recharge, and water resources management. This study explores interconnections between meteorological conditions, ice layer formation, and lateral flows during R.O.S. events throughout the 2018–2019 winter in meridional Quebec, Canada. Automated hydro‐meteorological measurements, such as water availability for runoff, snow water equivalent, and snowpit observations, are used to compute water and energy balances, making it possible to characterize a snowpack's internal conditions and flowthrough regimes. For compatibility assessment, water and energy balances‐based flowthrough scenarios are then compared to different hydro‐meteorological variables', such as water table or streamlet water levels. The results show an association between highly variable meteorological conditions, frequent R.O.S. events, and ice layer formation. Lateral flows were mainly observed during the early stage of the ablation period. The hydrologically significant lateral flows observed in the study are associated with winter conditions that are predicted to become more frequent in a changing climate, stressing the need for further evaluation of their potential impact at the watershed scale.
-
Abstract. Accurate knowledge of snow depth distributions in forested regions is crucial for applications in hydrology and ecology. In such a context, understanding and assessing the effect of vegetation and topographic conditions on snow depth variability is required. In this study, the spatial distribution of snow depth in two agro-forested sites and one coniferous site in eastern Canada was analyzed for topographic and vegetation effects on snow accumulation. Spatially distributed snow depths were derived by unmanned aerial vehicle light detection and ranging (UAV lidar) surveys conducted in 2019 and 2020. Distinct patterns of snow accumulation and erosion in open areas (fields) versus adjacent forested areas were observed in lidar-derived snow depth maps at all sites. Omnidirectional semi-variogram analysis of snow depths showed the existence of a scale break distance of less than 10 m in the forested area at all three sites, whereas open areas showed comparatively larger scale break distances (i.e., 11–14 m). The effect of vegetation and topographic variables on the spatial variability in snow depths at each site was investigated with random forest models. Results show that the underlying topography and the wind redistribution of snow along forest edges govern the snow depth variability at agro-forested sites, while forest structure variability dominates snow depth variability in the coniferous environment. These results highlight the importance of including and better representing these processes in physically based models for accurate estimates of snowpack dynamics.
-
This study assesses the performance of UAV lidar system in measuring high-resolution snow depths in agro-forested landscapes in southern Québec, Canada. We used manmade, mobile ground control points in summer and winter surveys to assess the absolute vertical accuracy of the point cloud. Relative accuracy was determined by a repeat flight over one survey block. Estimated absolute and relative errors were within the expected accuracy of the lidar (~5 and ~7 cm, respectively). The validation of lidar-derived snow depths with ground-based measurements showed a good agreement, however with higher uncertainties observed in forested areas compared with open areas. A strip alignment procedure was used to attempt the correction of misalignment between overlapping flight strips. However, the significant improvement of inter-strip relative accuracy brought by this technique was at the cost of the absolute accuracy of the entire point cloud. This phenomenon was further confirmed by the degraded performance of the strip-aligned snow depths compared with ground-based measurements. This study shows that boresight calibrated point clouds without strip alignment are deemed to be adequate to provide centimeter-level accurate snow depth maps with UAV lidar. Moreover, this study provides some of the earliest snow depth mapping results in agro-forested landscapes based on UAV lidar.